GSTDTAP

浏览/检索结果: 共9条,第1-9条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
REPRODUCIBILITY AND MENTAL HEALTH 期刊论文
NATURE, 2020, 582 (7811) : 300-300
作者:  Trimble, Virginia
收藏  |  浏览/下载:4/0  |  提交时间:2020/07/03

An inability to focus during a weekend trip forced Jeff Clements to ponder often-overlooked drivers of academic mental health.


An inability to focus during a weekend trip forced Jeff Clements to ponder often-overlooked drivers of academic mental health. Credit: Kiatanan Sugsompian/Getty


  
The mutational landscape of normal human endometrial epithelium 期刊论文
NATURE, 2020, 580 (7805) : 640-+
作者:  Rogelj, Joeri;  Forster, Piers M.;  Kriegler, Elmar;  Smith, Christopher J.;  Seferian, Roland
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

All normal somatic cells are thought to acquire mutations, but understanding of the rates, patterns, causes and consequences of somatic mutations in normal cells is limited. The uterine endometrium adopts multiple physiological states over a lifetime and is lined by a gland-forming epithelium(1,2). Here, using whole-genome sequencing, we show that normal human endometrial glands are clonal cell populations with total mutation burdens that increase at about 29 base substitutions per year and that are many-fold lower than those of endometrial cancers. Normal endometrial glands frequently carry '  driver'  mutations in cancer genes, the burden of which increases with age and decreases with parity. Cell clones with drivers often originate during the first decades of life and subsequently progressively colonize the epithelial lining of the endometrium. Our results show that mutational landscapes differ markedly between normal tissues-perhaps shaped by differences in their structure and physiology-and indicate that the procession of neoplastic change that leads to endometrial cancer is initiated early in life.


Whole-genome sequencing of normal human endometrial glands shows that most are clonal cell populations and frequently carry cancer driver mutations that occur early in life, and that parity has a protective effect.


  
Asynchronous carbon sink saturation in African and Amazonian tropical forests 期刊论文
NATURE, 2020, 579 (7797) : 80-+
作者:  Wannes Hubau;  Simon L. Lewis;  Oliver L. Phillips;  Kofi Affum-Baffoe;  Hans Beeckman;  Aida Cuní;  -Sanchez;  Armandu K. Daniels;  Corneille E. N. Ewango;  Sophie Fauset;  Jacques M. Mukinzi;  Douglas Sheil;  Bonaventure Sonké;  Martin J. P. Sullivan;  Terry C. H. Sunderland;  Hermann Taedoumg;  Sean C. Thomas;  Lee J. T. White;  Katharine A. Abernethy;  Stephen Adu-Bredu;  Christian A. Amani;  Timothy R. Baker;  Lindsay F. Banin;  Fidè;  le Baya;  Serge K. Begne;  Amy C. Bennett;  Fabrice Benedet;  Robert Bitariho;  Yannick E. Bocko;  Pascal Boeckx;  Patrick Boundja;  Roel J. W. Brienen;  Terry Brncic;  Eric Chezeaux;  George B. Chuyong;  Connie J. Clark;  Murray Collins;  James A. Comiskey;  David A. Coomes;  Greta C. Dargie;  Thales de Haulleville;  Marie Noel Djuikouo Kamdem;  Jean-Louis Doucet;  Adriane Esquivel-Muelbert;  Ted R. Feldpausch;  Alusine Fofanah;  Ernest G. Foli;  Martin Gilpin;  Emanuel Gloor;  Christelle Gonmadje;  Sylvie Gourlet-Fleury;  Jefferson S. Hall;  Alan C. Hamilton;  David J. Harris;  Terese B. Hart;  Mireille B. N. Hockemba;  Annette Hladik;  Suspense A. Ifo;  Kathryn J. Jeffery;  Tommaso Jucker;  Emmanuel Kasongo Yakusu;  Elizabeth Kearsley;  David Kenfack;  Alexander Koch;  Miguel E. Leal;  Aurora Levesley;  Jeremy A. Lindsell;  Janvier Lisingo;  Gabriela Lopez-Gonzalez;  Jon C. Lovett;  Jean-Remy Makana;  Yadvinder Malhi;  Andrew R. Marshall;  Jim Martin;  Emanuel H. Martin;  Faustin M. Mbayu;  Vincent P. Medjibe;  Vianet Mihindou;  Edward T. A. Mitchard;  Sam Moore;  Pantaleo K. T. Munishi;  Natacha Nssi Bengone;  Lucas Ojo;  Fidè;  le Evouna Ondo;  Kelvin S.-H. Peh;  Georgia C. Pickavance;  Axel Dalberg Poulsen;  John R. Poulsen;  Lan Qie;  Jan Reitsma;  Francesco Rovero;  Michael D. Swaine;  Joey Talbot;  James Taplin;  David M. Taylor;  Duncan W. Thomas;  Benjamin Toirambe;  John Tshibamba Mukendi;  Darlington Tuagben;  Peter M. Umunay;  Geertje M. F. van der Heijden;  Hans Verbeeck;  Jason Vleminckx;  Simon Willcock;  Hannsjö;  rg Wö;  ll;  John T. Woods;  Lise Zemagho
收藏  |  浏览/下载:23/0  |  提交时间:2020/05/13

Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions(1-3). Climate-driven vegetation models typically predict that this tropical forest '  carbon sink'  will continue for decades(4,5). Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53-0.79), in contrast to the long-term decline in Amazonian forests(6). Therefore the carbon sink responses of Earth'  s two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature(7-9). Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth'  s intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass(10) reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth'  s climate.


  
CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities 期刊论文
NATURE, 2020
作者:  Yang, Jianfeng;  Faccenda, Manuele
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Cancer genomics studies have identified thousands of putative cancer driver genes(1). Development of high-throughput and accurate models to define the functions of these genes is a major challenge. Here we devised a scalable cancer-spheroid model and performed genome-wide CRISPR screens in 2D monolayers and 3D lung-cancer spheroids. CRISPR phenotypes in 3D more accurately recapitulated those of in vivo tumours, and genes with differential sensitivities between 2D and 3D conditions were highly enriched for genes that are mutated in lung cancers. These analyses also revealed drivers that are essential for cancer growth in 3D and in vivo, but not in 2D. Notably, we found that carboxypeptidase D is responsible for removal of a C-terminal RKRR motif(2) from the alpha-chain of the insulin-like growth factor 1 receptor that is critical for receptor activity. Carboxypeptidase D expression correlates with patient outcomes in patients with lung cancer, and loss of carboxypeptidase D reduced tumour growth. Our results reveal key differences between 2D and 3D cancer models, and establish a generalizable strategy for performing CRISPR screens in spheroids to reveal cancer vulnerabilities.


CRISPR screens in a 3D spheroid cancer model system more accurately recapitulate cancer phenotypes than existing 2D models and were used to identify carboxypeptidase D, acting via the IGF1R, as a 3D-specific driver of cancer growth.


  
Spatiotemporal changes of drought characteristics and their dynamic drivers in Canada 期刊论文
ATMOSPHERIC RESEARCH, 2020, 232
作者:  Yang, Yang;  Gan, Thian Yew;  Tan, Xuezhi
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/02
Drought characteristics  Standardized Precipitation Evapotranspiration  Index  Dynamic linear model  Large-scale climate drivers  Canada  
Analyses of non-coding somatic drivers in 2,658 cancer whole genomes 期刊论文
NATURE, 2020, 578 (7793) : 102-+
作者:  Clark, Timothy D.;  Raby, Graham D.;  Roche, Dominique G.;  Binning, Sandra A.;  Speers-Roesch, Ben;  Jutfelt, Fredrik;  Sundin, Josefin
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

The discovery of drivers of cancer has traditionally focused on protein-coding genes(1-4). Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium(5) of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods. For structural variants, we present two methods of driver discovery, and identify regions that are significantly affected by recurrent breakpoints and recurrent somatic juxtapositions. Our analyses confirm previously reported drivers(6,7), raise doubts about others and identify novel candidates, including point mutations in the 5'  region of TP53, in the 3'  untranslated regions of NFKBIZ and TOB1, focal deletions in BRD4 and rearrangements in the loci of AKR1C genes. We show that although point mutations and structural variants that drive cancer are less frequent in non-coding genes and regulatory sequences than in protein-coding genes, additional examples of these drivers will be found as more cancer genomes become available.


  
Tobacco smoking and somatic mutations in human bronchial epithelium 期刊论文
NATURE, 2020, 578 (7794) : 266-+
作者:  Sharma, Nikhil;  Flaherty, Kali;  Lezgiyeva, Karina;  Wagner, Daniel E.;  Klein, Allon M.;  Ginty, David D.
收藏  |  浏览/下载:33/0  |  提交时间:2020/07/03

Whole-genome sequencing of normal bronchial epithelium from 16 individuals shows that tobacco smoking increases genomic heterogeneity, mutational burden and driver mutations, whereas stopping smoking promotes replenishment of the epithelium with near-normal cells.


Tobacco smoking causes lung cancer(1-3), a process that is driven by more than 60 carcinogens in cigarette smoke that directly damage and mutate DNA(4,5). The profound effects of tobacco on the genome of lung cancer cells are well-documented(6-10), but equivalent data for normal bronchial cells are lacking. Here we sequenced whole genomes of 632 colonies derived from single bronchial epithelial cells across 16 subjects. Tobacco smoking was the major influence on mutational burden, typically adding from 1,000 to 10,000 mutations per cell  massively increasing the variance both within and between subjects  and generating several distinct mutational signatures of substitutions and of insertions and deletions. A population of cells in individuals with a history of smoking had mutational burdens that were equivalent to those expected for people who had never smoked: these cells had less damage from tobacco-specific mutational processes, were fourfold more frequent in ex-smokers than current smokers and had considerably longer telomeres than their more-mutated counterparts. Driver mutations increased in frequency with age, affecting 4-14% of cells in middle-aged subjects who had never smoked. In current smokers, at least 25% of cells carried driver mutations and 0-6% of cells had two or even three drivers. Thus, tobacco smoking increases mutational burden, cell-to-cell heterogeneity and driver mutations, but quitting promotes replenishment of the bronchial epithelium from mitotically quiescent cells that have avoided tobacco mutagenesis.


  
Genomic basis for RNA alterations in cancer 期刊论文
NATURE, 2020, 578 (7793) : 129-+
作者:  Petitprez, Florent;  39;han
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Transcript alterations often result from somatic changes in cancer genomes(1). Various forms of RNA alterations have been described in cancer, including overexpression(2), altered splicing(3) and gene fusions(4)  however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)(5). Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis, of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed '  bridged'  fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer.


  
Radiochemically-Supported Microbial Communities: A Potential Mechanism for Biocolloid Production of Importance to Actinide Transport 科技报告
来源:US Department of Energy (DOE). 出版年: 2014
作者:  Moser, Duane P;  Hamilton-Brehm, Scott D;  Fisher, Jenny C;  Bruckner, James C;  Kruger, Brittany;  Sackett, Joshua;  Russell, Charles E;  Onstott, Tullis C;  Czerwinski, Ken
收藏  |  浏览/下载:16/0  |  提交时间:2019/04/05
Due to the legacy of Cold War nuclear weapons testing  the Nevada National Security Site (NNSS  formerly known as the Nevada Test Site (NTS)) contains millions of Curies of radioactive contamination. Presented here is a summary of the results of the first comprehensive study of subsurface microbial communities of radioactive and nonradioactive aquifers at this site. To achieve the objectives of this project  cooperative actions between the Desert Research Institute (DRI)  the Nevada Field Office of the National Nuclear Security Administration (NNSA)  the Underground Test Area Activity (UGTA)  and contractors such as Navarro-Interra (NI)  were required. Ultimately  fluids from 17 boreholes and two water-filled tunnels were sampled (sometimes on multiple occasions and from multiple depths) from the NNSS  the adjacent Nevada Test and Training Range (NTTR)  and a reference hole in the Amargosa Valley near Death Valley. The sites sampled ranged from highly-radioactive nuclear device test cavities to uncontaminated perched and regional aquifers. Specific areas sampled included recharge  intermediate  and discharge zones of a 100  000-km2 internally-draining province  known as the Death Valley Regional Flow System (DVRFS)  which encompasses the entirety of the NNSS/NTTR and surrounding areas. Specific geological features sampled included: West Pahute and Ranier Mesas (recharge zone)  Yucca and Frenchman Flats (transitional zone)  and the Western edge of the Amargosa Valley near Death Valley (discharge zone). The original overarching question underlying the proposal supporting this work was stated as: Can radiochemically-produced substrates support indigenous microbial communities and subsequently stimulate biocolloid formation that can affect radionuclides in NNSS subsurface nuclear test/detonation sites? Radioactive and non-radioactive groundwater samples were thus characterized for physical parameters  aqueous geochemistry  and microbial communities using both DNA- and cultivation-based tools in an effort to understand the drivers of microbial community structure (including radioactivity) and microbial interactions with select radionuclides and other factors across the range of habitats surveyed.