GSTDTAP

浏览/检索结果: 共38条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Astronaut with sights on Mars 期刊论文
NATURE, 2020, 581 (7809) : 367-367
作者:  Funabashi, Masanori;  Grove, Tyler L.;  Wang, Min;  Varma, Yug;  McFadden, Molly E.;  Brown, Laura C.;  Guo, Chunjun;  Higginbottom, Steven;  Almo, Steven C.;  Fischbach, Michael A.
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/03

NASA astronaut Jessica Watkins is at the forefront of a new crop of space explorers destined for the Moon, and maybe one day, Mars.


NASA astronaut Jessica Watkins is at the forefront of a new crop of space explorers destined for the Moon, and maybe one day, Mars.


  
CORONAVIRUS TESTS GO UNUSED IN THEIR THOUSANDS 期刊论文
NATURE, 2020, 580 (7803) : 312-313
作者:  Slabicki, Mikolaj;  Kozicka, Zuzanna;  Petzold, Georg;  Li, Yen-Der;  Manojkumar, Manisha;  Bunker, Richard D.;  Donovan, Katherine A.;  Sievers, Quinlan L.;  Koeppel, Jonas;  Suchyta, Dakota;  Sperling, Adam S.;  Fink, Emma C.;  Gasser, Jessica A.;  Wang, Li R.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03
Revealing enigmatic mucus structures in the deep sea using DeepPIV 期刊论文
NATURE, 2020, 583 (7814) : 78-+
作者:  Nguyen, Ngoc Uyen Nhi;  Canseco, Diana C.;  Xiao, Feng;  Nakada, Yuji;  Li, Shujuan;  Lam, Nicholas T.;  Muralidhar, Shalini A.;  Savla, Jainy J.;  Hill, Joseph A.;  Le, Victor;  Zidan, Kareem A.;  El-Feky, Hamed W.;  Wang, Zhaoning;  Ahmed, Mahmoud Salama;  Hubbi, Maimon E.;  Menendez-Montes, Ivan
收藏  |  浏览/下载:13/0  |  提交时间:2020/06/09

Advanced deep-sea imaging tools yield insights into the structure and function of mucus filtration houses built by midwater giant larvaceans.


Many animals build complex structures to aid in their survival, but very few are built exclusively from materials that animals create (1,2). In the midwaters of the ocean, mucoid structures are readily secreted by numerous animals, and serve many vital functions(3,4). However, little is known about these mucoid structures owing to the challenges of observing them in the deep sea. Among these mucoid forms, the '  houses'  of larvaceans are marvels of nature(5), and in the ocean twilight zone giant larvaceans secrete and build mucus filtering structures that can reach diameters of more than 1 m(6). Here we describe in situ laser-imaging technology(7) that reconstructs three-dimensional models of mucus forms. The models provide high-resolution views of giant larvacean houses and elucidate the role that house structure has in food capture and predator avoidance. Now that tools exist to study mucus structures found throughout the ocean, we can shed light on some of nature'  s most complex forms.


  
IGF1R is an entry receptor for respiratory syncytial virus (vol 53, pg 861, 2020) 期刊论文
NATURE, 2020, 583 (7815) : E22-E22
作者:  Smith, Jacob A.;  Wilson, Katy B.;  Sonstrom, Reilly E.;  Kelleher, Patrick J.;  Welch, Kevin D.;  Pert, Emmit K.;  Westendorff, Karl S.;  Dickie, Diane A.;  Wang, Xiaoping;  Pate, Brooks H.;  Harman, W. Dean
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  
Fatty acids and cancer-amplified ZDHHC19 promote STAT3 activation throughS-palmitoylation (vol 573, pg 139, 2019) (Retraction of Vol 573, Pg 139, 2020) 期刊论文
NATURE, 2020, 583 (7814) : 154-154
作者:  Zhang, Hao;  Liu, Chun-Xiao;  Gazibegovic, Sasa;  Xu, Di;  Logan, John A.;  Wang, Guanzhong;  van Loo, Nick;  Bommer, Jouri D. S.;  de Moor, Michiel W. A.;  Car, Diana;  Op Het Veld, Roy L. M.;  van Veldhoven, Petrus J.;  Koelling, Sebastian;  Verheijen, Marcel A.;  Pendharkar, Mihir;  Pennachio, Daniel J.;  Shojaei, Borzoyeh;  Lee, Joon Sue;  Palmstrom, Chris J.;  Bakkers, Erik P. A. M.;  Sarma, S. Das;  Kouwenhoven, Leo P.
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03
The fate of carbon in a mature forest under carbon dioxide enrichment 期刊论文
NATURE, 2020, 580 (7802) : 227-+
作者:  Sun, P. Z.;  Yang, Q.;  Kuang, W. J.;  Stebunov, Y. V.;  Xiong, W. Q.;  Yu, J.;  Nair, R. R.;  Katsnelson, M. I.;  Yuan, S. J.;  Grigorieva, I. V.;  Lozada-Hidalgo, M.;  Wang, F. C.;  Geim, A. K.
收藏  |  浏览/下载:70/0  |  提交时间:2020/05/13

Carbon dioxide enrichment of a mature forest resulted in the emission of the excess carbon back into the atmosphere via enhanced ecosystem respiration, suggesting that mature forests may be limited in their capacity to mitigate climate change.


Atmospheric carbon dioxide enrichment (eCO(2)) can enhance plant carbon uptake and growth(1-5), thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration(6). Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth(3-5), it is unclear whether mature forests respond to eCO(2) in a similar way. In mature trees and forest stands(7-10), photosynthetic uptake has been found to increase under eCO(2) without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO(2) unclear(4,5,7-11). Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO(2) exposure. We show that, although the eCO(2) treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO(2), and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


  
The projected timing of abrupt ecological disruption from climate change 期刊论文
NATURE, 2020, 580 (7804) : 496-+
作者:  Gorgulla, Christoph;  Boeszoermenyi, Andras;  Wang, Zi-Fu;  Fischer, Patrick D.;  Coote, Paul W.;  Padmanabha Das, Krishna M.;  Malets, Yehor S.;  Radchenko, Dmytro S.;  Moroz, Yurii S.;  Scott, David A.;  Fackeldey, Konstantin;  Hoffmann, Moritz;  Iavniuk, Iryna;  Wagner, Gerhard;  Arthanari, Haribabu
收藏  |  浏览/下载:53/0  |  提交时间:2020/05/13

As anthropogenic climate change continues the risks to biodiversity will increase over time, with future projections indicating that a potentially catastrophic loss of global biodiversity is on the horizon(1-3). However, our understanding of when and how abruptly this climate-driven disruption of biodiversity will occur is limited because biodiversity forecasts typically focus on individual snapshots of the future. Here we use annual projections (from 1850 to 2100) of temperature and precipitation across the ranges of more than 30,000 marine and terrestrial species to estimate the timing of their exposure to potentially dangerous climate conditions. We project that future disruption of ecological assemblages as a result of climate change will be abrupt, because within any given ecological assemblage the exposure of most species to climate conditions beyond their realized niche limits occurs almost simultaneously. Under a high-emissions scenario (representative concentration pathway (RCP) 8.5), such abrupt exposure events begin before 2030 in tropical oceans and spread to tropical forests and higher latitudes by 2050. If global warming is kept below 2 degrees C, less than 2% of assemblages globally are projected to undergo abrupt exposure events of more than 20% of their constituent species  however, the risk accelerates with the magnitude of warming, threatening 15% of assemblages at 4 degrees C, with similar levels of risk in protected and unprotected areas. These results highlight the impending risk of sudden and severe biodiversity losses from climate change and provide a framework for predicting both when and where these events may occur.


Using annual projections of temperature and precipitation to estimate when species will be exposed to potentially harmful climate conditions reveals that disruption of ecological assemblages as a result of climate change will be abrupt and could start as early as the current decade.


  
Securin-independent regulation of separase by checkpoint-induced shugoshin-MAD2 期刊论文
NATURE, 2020, 580 (7804) : 536-+
作者:  Redhai, Siamak;  Pilgrim, Clare;  Gaspar, Pedro;  van Giesen, Lena;  Lopes, Tatiana;  Riabinina, Olena;  Grenier, Theodore;  Milona, Alexandra;  Chanana, Bhavna;  Swadling, Jacob B.;  Wang, Yi-Fang;  Dahalan, Farah;  Yuan, Michaela;  Wilsch-Brauninger, Michaela;  Lin, Wei-hsiang;  Dennison, Nathan;  Capriotti, Paolo;  Lawniczak, Mara K. N.;  Baines, Richard A.;  Warnecke, Tobias;  Windbichler, Nikolai;  Leulier, Francois;  Bellono, Nicholas W.;  Miguel-Aliaga, Irene
收藏  |  浏览/下载:32/0  |  提交时间:2020/07/03

Shugoshin and MAD2 regulate separase-mediated chromosome separation during mitosis, in parallel to a previously identified mechanism involving the anaphase inhibitor securin.


Separation of eukaryotic sister chromatids during the cell cycle is timed by the spindle assembly checkpoint (SAC) and ultimately triggered when separase cleaves cohesion-mediating cohesin(1-3). Silencing of the SAC during metaphase activates the ubiquitin ligase APC/C (anaphase-promoting complex, also known as the cyclosome) and results in the proteasomal destruction of the separase inhibitor securin(1). In the absence of securin, mammalian chromosomes still segregate on schedule, but it is unclear how separase is regulated under these conditions(4,5). Here we show that human shugoshin 2 (SGO2), an essential protector of meiotic cohesin with unknown functions in the soma(6,7), is turned into a separase inhibitor upon association with SAC-activated MAD2. SGO2-MAD2 can functionally replace securin and sequesters most separase in securin-knockout cells. Acute loss of securin and SGO2, but not of either protein individually, resulted in separase deregulation associated with premature cohesin cleavage and cytotoxicity. Similar to securin(8,9), SGO2 is a competitive inhibitor that uses a pseudo-substrate sequence to block the active site of separase. APC/C-dependent ubiquitylation and action of the AAA-ATPase TRIP13 in conjunction with the MAD2-specific adaptor p31(comet) liberate separase from SGO2-MAD2 in vitro. The latter mechanism facilitates a considerable degree of sister chromatid separation in securin-knockout cells that lack APC/C activity. Thus, our results identify an unexpected function of SGO2 in mitotically dividing cells and a mechanism of separase regulation that is independent of securin but still supervised by the SAC.


  
Highly porous nature of a primitive asteroid revealed by thermal imaging 期刊论文
NATURE, 2020, 579 (7800) : 518-522
作者:  Quinn, Robert A.;  Melnik, Alexey, V;  Vrbanac, Alison;  Fu, Ting;  Patras, Kathryn A.;  Christy, Mitchell P.;  Bodai, Zsolt;  Belda-Ferre, Pedro;  Tripathi, Anupriya;  Chung, Lawton K.;  Downes, Michael;  Welch, Ryan D.;  Quinn, Melissa;  Humphrey, Greg;  Panitchpakdi, Morgan;  Weldon, Kelly C.;  Aksenov, Alexander;  da Silva, Ricardo;  Avila-Pacheco, Julian;  Clish, Clary;  Bae, Sena;  Mallick, Himel;  Franzosa, Eric A.;  Lloyd-Price, Jason;  Bussell, Robert;  Thron, Taren;  Nelson, Andrew T.;  Wang, Mingxun;  Leszczynski, Eric;  Vargas, Fernando;  Gauglitz, Julia M.;  Meehan, Michael J.;  Gentry, Emily;  Arthur, Timothy D.;  Komor, Alexis C.;  Poulsen, Orit;  Boland, Brigid S.;  Chang, John T.;  Sandborn, William J.;  Lim, Meerana;  Garg, Neha;  Lumeng, Julie C.;  Xavier, Ramnik J.;  Kazmierczak, Barbara, I;  Jain, Ruchi;  Egan, Marie;  Rhee, Kyung E.;  Ferguson, David;  Raffatellu, Manuela;  Vlamakis, Hera;  Haddad, Gabriel G.;  Siegel, Dionicio;  Huttenhower, Curtis;  Mazmanian, Sarkis K.;  Evans, Ronald M.;  Nizet, Victor;  Knight, Rob;  Dorrestein, Pieter C.
收藏  |  浏览/下载:46/0  |  提交时间:2020/05/13

Carbonaceous (C-type) asteroids(1) are relics of the early Solar System that have preserved primitive materials since their formation approximately 4.6 billion years ago. They are probably analogues of carbonaceous chondrites(2,3) and are essential for understanding planetary formation processes. However, their physical properties remain poorly known because carbonaceous chondrite meteoroids tend not to survive entry to Earth'  s atmosphere. Here we report on global one-rotation thermographic images of the C-type asteroid 162173 Ryugu, taken by the thermal infrared imager (TIR)(4) onboard the spacecraft Hayabusa2(5), indicating that the asteroid'  s boulders and their surroundings have similar temperatures, with a derived thermal inertia of about 300 J m(-2) s(-0.5) K-1 (300 tiu). Contrary to predictions that the surface consists of regolith and dense boulders, this low thermal inertia suggests that the boulders are more porous than typical carbonaceous chondrites(6) and that their surroundings are covered with porous fragments more than 10 centimetres in diameter. Close-up thermal images confirm the presence of such porous fragments and the flat diurnal temperature profiles suggest a strong surface roughness effect(7,8). We also observed in the close-up thermal images boulders that are colder during the day, with thermal inertia exceeding 600 tiu, corresponding to dense boulders similar to typical carbonaceous chondrites(6). These results constrain the formation history of Ryugu: the asteroid must be a rubble pile formed from impact fragments of a parent body with microporosity(9) of approximately 30 to 50 per cent that experienced a low degree of consolidation. The dense boulders might have originated from the consolidated innermost region or they may have an exogenic origin. This high-porosity asteroid may link cosmic fluffy dust to dense celestial bodies(10).


Thermal imaging data obtained from the spacecraft Hayabusa2 reveal that the carbonaceous asteroid 162173 Ryugu is an object of unusually high porosity.


  
A lysosomal switch triggers proteostasis renewal in the immortal C. elegans germ lineage (vol 551, pg 629, 2017) 期刊论文
NATURE, 2020, 580 (7802) : E5-E5
作者:  Lu, Zhihao;  Zou, Jianling;  Li, Shuang;  Topper, Michael J.;  Tao, Yong;  Zhang, Hao;  Jiao, Xi;  Xie, Wenbing;  Kong, Xiangqian;  Vaz, Michelle;  Li, Huili;  Cai, Yi;  Xia, Limin;  Huang, Peng;  Rodgers, Kristen;  Lee, Beverly;  Riemer, Joanne B.;  Day, Chi-Ping;  Yen, Ray-Whay Chiu;  Cui, Ying;  Wang, Yujiao;  Wang, Yanni;  Zhang, Weiqiang;  Easwaran, Hariharan;  Hulbert, Alicia;  Kim, KiBem;  Juergens, Rosalyn A.;  Yang, Stephen C.;  Battafarano, Richard J.;  Bush, Errol L.;  Broderick, Stephen R.;  Cattaneo, Stephen M.;  Brahmer, Julie R.;  Rudin, Charles M.;  Wrangle, John;  Mei, Yuping;  Kim, Young J.;  Zhang, Bin;  Wang, Ken Kang-Hsin;  Forde, Patrick M.;  Margolick, Joseph B.;  Nelkin, Barry D.;  Zahnow, Cynthia A.;  Pardoll, Drew M.;  Housseau, Franck;  Baylin, Stephen B.;  Shen, Lin;  Brock, Malcolm V.
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/03