GSTDTAP

浏览/检索结果: 共35条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Diffusional growth of cloud droplets in homogeneous isotropic turbulence: DNS, scaled-up DNS, and stochastic model 期刊论文
Atmospheric Chemistry and Physics, 2020
作者:  Lois Thomas, Wojciech W. Grabowski, and Bipin Kumar
收藏  |  浏览/下载:6/0  |  提交时间:2020/08/09
Rapid cost decrease of renewables and storage accelerates the decarbonization of China's power system 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  He, Gang;  Lin, Jiang;  Sifuentes, Froylan;  Liu, Xu;  Abhyankar, Nikit;  Phadke, Amol
收藏  |  浏览/下载:10/0  |  提交时间:2020/05/20
Accelerated discovery of CO2 electrocatalysts using active machine learning 期刊论文
NATURE, 2020, 581 (7807) : 178-+
作者:  Lan, Jun;  Ge, Jiwan;  Yu, Jinfang;  Shan, Sisi;  Zhou, Huan;  Fan, Shilong;  Zhang, Qi;  Shi, Xuanling;  Wang, Qisheng;  Zhang, Linqi;  Wang, Xinquan
收藏  |  浏览/下载:88/0  |  提交时间:2020/07/03

The rapid increase in global energy demand and the need to replace carbon dioxide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy(1,2). Particularly attractive is the electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and renewable energy(3-8). Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products(9-16), and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 +/- 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO2 reduction(17). Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C-C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts.


  
Iron-based binary ferromagnets for transverse thermoelectric conversion 期刊论文
NATURE, 2020, 581 (7806) : 53-+
作者:  Grun, Rainer;  Pike, Alistair;  McDermott, Frank;  Eggins, Stephen;  Mortimer, Graham;  Aubert, Maxime;  Kinsley, Lesley;  Joannes-Boyau, Renaud;  Rumsey, Michael;  Denys, Christiane;  Brink, James;  Clark, Tara;  Stringer, Chris
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Aluminium- and gallium-doped iron compounds show a large anomalous Nernst effect owing to a topological electronic structure, and their films are potentially suitable for designing low-cost, flexible microelectronic thermoelectric generators.


Thermoelectric generation using the anomalous Nernst effect (ANE) has great potential for application in energy harvesting technology because the transverse geometry of the Nernst effect should enable efficient, large-area and flexible coverage of a heat source. For such applications to be viable, substantial improvements will be necessary not only for their performance but also for the associated material costs, safety and stability. In terms of the electronic structure, the anomalous Nernst effect (ANE) originates from the Berry curvature of the conduction electrons near the Fermi energy(1,2). To design a large Berry curvature, several approaches have been considered using nodal points and lines in momentum space(3-10). Here we perform a high-throughput computational search and find that 25 percent doping of aluminium and gallium in alpha iron, a naturally abundant and low-cost element, dramatically enhances the ANE by a factor of more than ten, reaching about 4 and 6 microvolts per kelvin at room temperature, respectively, close to the highest value reported so far. The comparison between experiment and theory indicates that the Fermi energy tuning to the nodal web-a flat band structure made of interconnected nodal lines-is the key for the strong enhancement in the transverse thermoelectric coefficient, reaching a value of about 5 amperes per kelvin per metre with a logarithmic temperature dependence. We have also succeeded in fabricating thin films that exhibit a large ANE at zero field, which could be suitable for designing low-cost, flexible microelectronic thermoelectric generators(11-13).


  
Hypohydrostatic Simulation of a Quasi-Steady Baroclinic Cyclone 期刊论文
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2020, 77 (4) : 1415-1428
作者:  Hsieh, Tsung-Lin;  Garner, Stephen T.;  Held, Isaac M.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
Convection  Extratropical cyclones  Nonhydrostatic models  
Nonuniqueness in a Single-Column Model for Moist Convection 期刊论文
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2020, 77 (3) : 1001-1018
作者:  Turner, M. R.;  Norbury, J.
收藏  |  浏览/下载:1/0  |  提交时间:2020/07/02
Convection  
Managing energy infrastructure to decarbonize industrial parks in China 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Guo, Yang;  Tian, Jinping;  Chen, Lyujun
收藏  |  浏览/下载:10/0  |  提交时间:2020/05/13
On-device lead sequestration for perovskite solar cells 期刊论文
NATURE, 2020, 578 (7796) : 555-+
作者:  Fruchart, Michel;  Zhou, Yujie;  Vitelli, Vincenzo
收藏  |  浏览/下载:30/0  |  提交时间:2020/07/03

Perovskite solar cells, as an emerging high-efficiency and low-cost photovoltaic technology(1-6), face obstacles on their way towards commercialization. Substantial improvements have been made to device stability(7-10), but potential issues with lead toxicity and leaching from devices remain relatively unexplored(11-16). The potential for lead leakage could be perceived as an environmental and public health risk when using perovskite solar cells in building-integrated photovoltaics(17-23). Here we present a chemical approach for on-device sequestration of more than 96 per cent of lead leakage caused by severe device damage. A coating of lead-absorbing material is applied to the front and back sides of the device stack. On the glass side of the front transparent conducting electrode, we use a transparent lead-absorbing molecular film containing phosphonic acid groups that bind strongly to lead. On the back (metal) electrode side, we place a polymer film blended with lead-chelating agents between the metal electrode and a standard photovoltaic packing film. The lead-absorbing films on both sides swell to absorb the lead, rather than dissolve, when subjected to water soaking, thus retaining structural integrity for easy collection of lead after damage.


Using lead-absorbing materials to coat the front and back of perovskite solar cells can prevent lead leaching from damaged devices, without affecting the device performance or long-term operation stability.


  
Low cost satellite constellations for nearly continuous global coverage 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Singh, Lake A.;  Whittecar, William R.;  DiPrinzio, Marc D.;  Herman, Jonathan D.;  Ferringer, Matthew P.;  Reed, Patrick M.
收藏  |  浏览/下载:7/0  |  提交时间:2020/05/13
Gram-scale bottom-up flash graphene synthesis 期刊论文
NATURE, 2020, 577 (7792) : 647-651
作者:  Long, Haizhen;  Zhang, Liwei;  Lv, Mengjie;  Wen, Zengqi;  Zhang, Wenhao;  Chen, Xiulan;  Zhang, Peitao;  Li, Tongqing;  Chang, Luyuan;  Jin, Caiwei;  Wu, Guozhao;  Wang, Xi;  Yang, Fuquan;  Pei, Jianfeng;  Chen, Ping;  Margueron, Raphael;  Deng, Haiteng;  Zhu, Mingzhao;  Li, Guohong
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Most bulk-scale graphene is produced by a top-down approach, exfoliating graphite, which often requires large amounts of solvent with high-energy mixing, shearing, sonication or electrochemical treatment(1-3). Although chemical oxidation of graphite to graphene oxide promotes exfoliation, it requires harsh oxidants and leaves the graphene with a defective perforated structure after the subsequent reduction step(3,4). Bottom-up synthesis of high-quality graphene is often restricted to ultrasmall amounts if performed by chemical vapour deposition or advanced synthetic organic methods, or it provides a defect-ridden structure if carried out in bulk solution(4-6). Here we show that flash Joule heating of inexpensive carbon sources-such as coal, petroleum coke, biochar, carbon black, discarded food, rubber tyres and mixed plastic waste-can afford gram-scale quantities of graphene in less than one second. The product, named flash graphene (FG) after the process used to produce it, shows turbostratic arrangement (that is, little order) between the stacked graphene layers. FG synthesis uses no furnace and no solvents or reactive gases. Yields depend on the carbon content of the source  when using a high-carbon source, such as carbon black, anthracitic coal or calcined coke, yields can range from 80 to 90 per cent with carbon purity greater than 99 per cent. No purification steps are necessary. Raman spectroscopy analysis shows a low-intensity or absent D band for FG, indicating that FG has among the lowest defect concentrations reported so far for graphene, and confirms the turbostratic stacking of FG, which is clearly distinguished from turbostratic graphite. The disordered orientation of FG layers facilitates its rapid exfoliation upon mixing during composite formation. The electric energy cost for FG synthesis is only about 7.2 kilojoules per gram, which could render FG suitable for use in bulk composites of plastic, metals, plywood, concrete and other building materials.


Flash Joule heating of inexpensive carbon sources is used to produce gram-scale quantities of high-quality graphene in under a second, without the need for a furnace, solvents or reactive gases.