GSTDTAP

浏览/检索结果: 共238条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Persistence of soil organic carbon caused by functional complexity 期刊论文
NATURE GEOSCIENCE, 2020
作者:  Lehmann, Johannes;  Hansel, Colleen M.;  Kaiser, Christina;  Kleber, Markus;  Maher, Kate;  Manzoni, Stefano;  Nunan, Naoise;  Reichstein, Markus;  Schimel, Joshua P.;  Torn, Margaret S.;  Wieder, William R.;  Koegel-Knabner, Ingrid
收藏  |  浏览/下载:12/0  |  提交时间:2020/08/09
Production Flux and Chemical Characteristics of Spray Aerosol Generated From Raindrop Impact on Seawater and Soil 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (13)
作者:  Zhou, Kaili;  Wang, Shurong;  Lu, Xiaohui;  Chen, Hong;  Wang, Lin;  Chen, Jianmin;  Yang, Xin;  Wang, Xiaofei
收藏  |  浏览/下载:14/0  |  提交时间:2020/08/18
spray aerosol  aerosol flux  raindrop impact  
Linking Marine Biological Activity to Aerosol Chemical Composition and Cloud-Relevant Properties Over the North Atlantic Ocean 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (13)
作者:  Mansour, Karam;  39;Dowd, Colin
收藏  |  浏览/下载:12/0  |  提交时间:2020/08/18
aerosol-cloud interactions  CCN  INP  marine aerosol  ocean-atmosphere interactions  oceanic biological activity  
Transport From the Asian Summer Monsoon Anticyclone Over the Western Pacific 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (13)
作者:  Honomichl, Shawn B.;  Pan, Laura L.
收藏  |  浏览/下载:14/0  |  提交时间:2020/08/18
Asian Monsoon Transport  Upper Tropospheric Chemical Composition  Trajectory Modeling  
Stratospheric Ozone Changes From Explosive Tropical Volcanoes: Modeling and Ice Core Constraints 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (11)
作者:  Ming, Alison;  Winton, V. Holly L.;  Keeble, James;  Abraham, Nathan L.;  Dalvi, Mohit C.;  Griffiths, Paul;  Caillon, Nicolas;  Jones, Anna E.;  Mulvaney, Robert;  Savarino, Joel;  Frey, Markus M.;  Yang, Xin
收藏  |  浏览/下载:11/0  |  提交时间:2020/08/18
volcanic eruption  ozone  isotopes in ice cores  Samalas  chemistry-climate modeling  Antarctica  
Strain engineering and epitaxial stabilization of halide perovskites 期刊论文
NATURE, 2020, 577 (7789) : 209-+
作者:  Chen, Yimu;  Lei, Yusheng;  Li, Yuheng;  Yu, Yugang;  Cai, Jinze;  Chiu, Ming-Hui;  Rao, Rahul;  Gu, Yue;  Wang, Chunfeng;  Choi, Woojin;  Hu, Hongjie;  Wang, Chonghe;  Li, Yang;  Song, Jiawei;  Zhang, Jingxin;  Qi, Baiyan;  Lin, Muyang;  Zhang, Zhuorui;  Islam, Ahmad E.;  Maruyama, Benji;  Dayeh, Shadi;  Li, Lain-Jong;  Yang, Kesong;  Lo, Yu-Hwa;  Xu, Sheng
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

Strain engineering is a powerful tool with which to enhance semiconductor device performance(1,2). Halide perovskites have shown great promise in device applications owing to their remarkable electronic and optoelectronic properties(3-5). Although applying strain to halide perovskites has been frequently attempted, including using hydrostatic pressurization(6-8), electrostriction(9), annealing(10-12), van der Waals force(13), thermal expansion mismatch(14), and heat-induced substrate phase transition(15), the controllable and device-compatible strain engineering of halide perovskites by chemical epitaxy remains a challenge, owing to the absence of suitable lattice-mismatched epitaxial substrates. Here we report the strained epitaxial growth of halide perovskite single-crystal thin films on lattice-mismatched halide perovskite substrates. We investigated strain engineering of a-formamidinium lead iodide (alpha-FAPbI(3)) using both experimental techniques and theoretical calculations. By tailoring the substrate composition-and therefore its lattice parameter-a compressive strain as high as 2.4 per cent is applied to the epitaxial alpha-FAPbI(3) thin film. We demonstrate that this strain effectively changes the crystal structure, reduces the bandgap and increases the hole mobility of alpha-FAPbI(3). Strained epitaxy is also shown to have a substantial stabilization effect on the alpha-FAPbI(3) phase owing to the synergistic effects of epitaxial stabilization and strain neutralization. As an example, strain engineering is applied to enhance the performance of an alpha-FAPbI(3)-based photodetector.


  
Phase Transition of Enstatite-Ferrosilite Solid Solutions at High Pressure and High Temperature: Constraints on Metastable Orthopyroxene in Cold Subduction 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (12)
作者:  Xu, Jingui;  Fan, Dawei;  Zhang, Dongzhou;  Guo, Xinzhuan;  Zhou, Wenge;  Dera, Przemyslaw K.
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13
Engineering covalently bonded 2D layered materials by self-intercalation 期刊论文
NATURE, 2020, 581 (7807) : 171-+
作者:  Shang, Jian;  Ye, Gang;  Shi, Ke;  Wan, Yushun;  Luo, Chuming;  Aihara, Hideki;  Geng, Qibin;  Auerbach, Ashley;  Li, Fang
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Two-dimensional (2D) materials(1-5) offer a unique platform from which to explore the physics of topology and many-body phenomena. New properties can be generated by filling the van der Waals gap of 2D materials with intercalants(6,7)  however, post-growth intercalation has usually been limited to alkali metals(8-10). Here we show that the self-intercalation of native atoms(11,12) into bilayer transition metal dichalcogenides during growth generates a class of ultrathin, covalently bonded materials, which we name ic-2D. The stoichiometry of these materials is defined by periodic occupancy patterns of the octahedral vacancy sites in the van der Waals gap, and their properties can be tuned by varying the coverage and the spatial arrangement of the filled sites(7,13). By performing growth under high metal chemical potential(14,15) we can access a range of tantalum-intercalated TaS(Se)(y), including 25% Ta-intercalated Ta9S16, 33.3% Ta-intercalated Ta7S12, 50% Ta-intercalated Ta10S16, 66.7% Ta-intercalated Ta8Se12 (which forms a Kagome lattice) and 100% Ta-intercalated Ta9Se12. Ferromagnetic order was detected in some of these intercalated phases. We also demonstrate that self-intercalated V11S16, In11Se16 and FexTey can be grown under metal-rich conditions. Our work establishes self-intercalation as an approach through which to grow a new class of 2D materials with stoichiometry- or composition-dependent properties.


  
Characteristic and Spatiotemporal Variation of Air Pollution in Northern China Based on Correlation Analysis and Clustering Analysis of Five Air Pollutants 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (8)
作者:  Tian, Dayong;  Fan, Junhui;  Jin, Hangbiao;  Mao, Haichen;  Geng, Dan;  Hou, Shaogang;  Zhang, Peng;  Zhang, Yifeng
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/02
PM2  5  Ozone  Air pollution  Northern China  Spatiotemporal variation  
Cellular locomotion using environmental topography 期刊论文
NATURE, 2020
作者:  Fernandez, Diego Carlos;  Komal, Ruchi;  Langel, Jennifer;  Ma, Jun;  Duy, Phan Q.;  Penzo, Mario A.;  Zhao, Haiqing;  Hattar, Samer
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

Within three-dimensional environments, leukocytes can migrate even in the complete absence of adhesive forces using the topographical features of the substrate to propel themselves.


Eukaryotic cells migrate by coupling the intracellular force of the actin cytoskeleton to the environment. While force coupling is usually mediated by transmembrane adhesion receptors, especially those of the integrin family, amoeboid cells such as leukocytes can migrate extremely fast despite very low adhesive forces(1). Here we show that leukocytes cannot only migrate under low adhesion but can also transmit forces in the complete absence of transmembrane force coupling. When confined within three-dimensional environments, they use the topographical features of the substrate to propel themselves. Here the retrograde flow of the actin cytoskeleton follows the texture of the substrate, creating retrograde shear forces that are sufficient to drive the cell body forwards. Notably, adhesion-dependent and adhesion-independent migration are not mutually exclusive, but rather are variants of the same principle of coupling retrograde actin flow to the environment and thus can potentially operate interchangeably and simultaneously. As adhesion-free migration is independent of the chemical composition of the environment, it renders cells completely autonomous in their locomotive behaviour.