GSTDTAP

浏览/检索结果: 共49条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
欧美研究称气候模型低估了植被碳循环过程 快报文章
气候变化快报,2024年第13期
作者:  裴惠娟
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:457/0  |  提交时间:2024/07/05
Terrestrial Vegetation  Carbon Uptake  Carbon Turnover  Radiocarbon  
研究揭示气候变化对北极动物运动的影响 快报文章
气候变化快报,2020年第22期
作者:  裴惠娟
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:402/0  |  提交时间:2020/11/20
Global Warming  Spatial Emergent Constraint  Soil Carbon Turnover  
Millennial-scale hydroclimate control of tropical soil carbon storage 期刊论文
NATURE, 2020, 581 (7806) : 63-+
作者:  Lam, Tommy Tsan-Yuk;  Jia, Na;  Zhang, Ya-Wei;  Shum, Marcus Ho-Hin;  Jiang, Jia-Fu;  Zhu, Hua-Chen;  Tong, Yi-Gang;  Shi, Yong-Xia;  Ni, Xue-Bing;  Liao, Yun-Shi;  Li, Wen-Juan;  Jiang, Bao-Gui;  Wei, Wei;  Yuan, Ting-Ting;  Zheng, Kui;  Cui, Xiao-Ming;  Li, Jie;  Pei, Guang-Qian
收藏  |  浏览/下载:25/0  |  提交时间:2020/05/13

Over the past 18,000 years, the residence time and amount of soil carbon stored in the Ganges-Brahmaputra basin have been controlled by the intensity of Indian Summer Monsoon rainfall, with greater carbon destabilization during wetter, warmer conditions.


The storage of organic carbon in the terrestrial biosphere directly affects atmospheric concentrations of carbon dioxide over a wide range of timescales. Within the terrestrial biosphere, the magnitude of carbon storage can vary in response to environmental perturbations such as changing temperature or hydroclimate(1), potentially generating feedback on the atmospheric inventory of carbon dioxide. Although temperature controls the storage of soil organic carbon at mid and high latitudes(2,3), hydroclimate may be the dominant driver of soil carbon persistence in the tropics(4,5)  however, the sensitivity of tropical soil carbon turnover to large-scale hydroclimate variability remains poorly understood. Here we show that changes in Indian Summer Monsoon rainfall have controlled the residence time of soil carbon in the Ganges-Brahmaputra basin over the past 18,000 years. Comparison of radiocarbon ages of bulk organic carbon and terrestrial higher-plant biomarkers with co-located palaeohydrological records(6) reveals a negative relationship between monsoon rainfall and soil organic carbon stocks on a millennial timescale. Across the deglaciation period, a depletion of basin-wide soil carbon stocks was triggered by increasing rainfall and associated enhanced soil respiration rates. Our results suggest that future hydroclimate changes in tropical regions are likely to accelerate soil carbon destabilization, further increasing atmospheric carbon dioxide concentrations.


  
Metabolites released from apoptotic cells act as tissue messengers 期刊论文
NATURE, 2020
作者:  Chica, Daniel G.;  He, Yihui;  McCall, Kyle M.;  Chung, Duck Young;  Pak, Rahmi O.;  Trimarchi, Giancarlo;  Liu, Zhifu;  De Lurgio, Patrick M.;  Wessels, Bruce W.;  Kanatzidis, Mercouri G.
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Caspase-dependent apoptosis accounts for approximately 90% of homeostatic cell turnover in the body(1), and regulates inflammation, cell proliferation, and tissue regeneration(2-4). How apoptotic cells mediate such diverse effects is not fully understood. Here we profiled the apoptotic metabolite secretome and determined its effects on the tissue neighbourhood. We show that apoptotic lymphocytes and macrophages release specific metabolites, while retaining their membrane integrity. A subset of these metabolites is also shared across different primary cells and cell lines after the induction of apoptosis by different stimuli. Mechanistically, the apoptotic metabolite secretome is not simply due to passive emptying of cellular contents and instead is a regulated process. Caspase-mediated opening of pannexin 1 channels at the plasma membrane facilitated the release of a select subset of metabolites. In addition, certain metabolic pathways continued to remain active during apoptosis, with the release of only select metabolites from a given pathway. Functionally, the apoptotic metabolite secretome induced specific gene programs in healthy neighbouring cells, including suppression of inflammation, cell proliferation, and wound healing. Furthermore, a cocktail of apoptotic metabolites reduced disease severity in mouse models of inflammatory arthritis and lung-graft rejection. These data advance the concept that apoptotic cells are not inert cells waiting for removal, but instead release metabolites as '  good-bye'  signals to actively modulate outcomes in tissues.


Apoptotic cells communicate with neighbouring cells by the regulated release of specific metabolites, and a cocktail of select apoptotic metabolites reduces disease severity in mouse models of inflammatory arthritis and lung transplant rejection.


  
Live-animal imaging of native haematopoietic stem and progenitor cells 期刊论文
NATURE, 2020, 578 (7794) : 278-+
作者:  Gerstung, Moritz;  Jolly, Clemency;  Leshchiner, Ignaty;  Dentro, Stefan C.;  Gonzalez, Santiago;  Rosebrock, Daniel;  Mitchell, Thomas J.;  Rubanova, Yulia;  Anur, Pavana;  Yu, Kaixian;  Tarabichi, Maxime;  Deshwar, Amit;  Wintersinger, Jeff;  Kleinheinz, Kortine;  Vazquez-Garcia, Ignacio;  Haase, Kerstin;  Jerman, Lara;  Sengupta, Subhajit;  Macintyre, Geoff;  Malikic, Salem;  Donmez, Nilgun;  Livitz, Dimitri G.;  Cmero, Marek;  Demeulemeester, Jonas;  Schumacher, Steven;  Fan, Yu;  Yao, Xiaotong;  Lee, Juhee;  Schlesner, Matthias;  Boutros, Paul C.;  Bowtell, David D.;  Zhu, Hongtu;  Getz, Gad;  Imielinski, Marcin;  Beroukhim, Rameen;  Sahinalp, S. Cenk;  Ji, Yuan;  Peifer, Martin;  Markowetz, Florian;  Mustonen, Ville;  Yuan, Ke;  Wang, Wenyi;  Morris, Quaid D.;  Spellman, Paul T.;  Wedge, David C.;  Van Loo, Peter;  Deshwar, Amit G.;  Adams, David J.;  Campbell, Peter J.;  Cao, Shaolong;  Christie, Elizabeth L.;  Cun, Yupeng;  Dawson, Kevin J.;  Drews, Ruben M.;  Eils, Roland;  Fittall, Matthew;  Garsed, Dale W.;  Ha, Gavin;  Lee-Six, Henry;  Martincorena, Inigo;  Oesper, Layla;  Peto, Myron;  Raphael, Benjamin J.;  Salcedo, Adriana;  Shi, Ruian;  Shin, Seung Jun;  Spiro, Oliver;  Stein, Lincoln D.;  Vembu, Shankar;  Wheeler, David A.;  Yang, Tsun-Po
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

The biology of haematopoietic stem cells (HSCs) has predominantly been studied under transplantation conditions(1,2). It has been particularly challenging to study dynamic HSC behaviour, given that the visualization of HSCs in the native niche in live animals has not, to our knowledge, been achieved. Here we describe a dual genetic strategy in mice that restricts reporter labelling to a subset of the most quiescent long-term HSCs (LT-HSCs) and that is compatible with current intravital imaging approaches in the calvarial bone marrow(3-5). We show that this subset of LT-HSCs resides close to both sinusoidal blood vessels and the endosteal surface. By contrast, multipotent progenitor cells (MPPs) show greater variation in distance from the endosteum and are more likely to be associated with transition zone vessels. LT-HSCs are not found in bone marrow niches with the deepest hypoxia and instead are found in hypoxic environments similar to those of MPPs. In vivo time-lapse imaging revealed that LT-HSCs at steady-state show limited motility. Activated LT-HSCs show heterogeneous responses, with some cells becoming highly motile and a fraction of HSCs expanding clonally within spatially restricted domains. These domains have defined characteristics, as HSC expansion is found almost exclusively in a subset of bone marrow cavities with bone-remodelling activity. By contrast, cavities with low bone-resorbing activity do not harbour expanding HSCs. These findings point to previously unknown heterogeneity within the bone marrow microenvironment, imposed by the stages of bone turnover. Our approach enables the direct visualization of HSC behaviours and dissection of heterogeneity in HSC niches.


A dual genetic strategy enables the labelling and in vivo imaging of native long-term haematopoietic stem cells in the mouse calvarial bone marrow.


  
Scaling-up biodiversity-ecosystem functioning research 期刊论文
ECOLOGY LETTERS, 2020, 23 (4) : 757-776
作者:  Gonzalez, Andrew;  Germain, Rachel M.;  Srivastava, Diane S.;  Filotas, Elise;  Dee, Laura E.;  Gravel, Dominique;  Thompson, Patrick L.;  Isbell, Forest;  Wang, Shaopeng;  Kefi, Sonia;  Montoya, Jose;  Zelnik, Yuval R.;  Loreau, Michel
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/02
Beta diversity  biological diversity  ecosystem functioning  ecosystems  environmental heterogeneity  scale  turnover  
Changes in vegetation structure and composition of urban and rural forest patches in Baltimore from 1998 to 2015 期刊论文
FOREST ECOLOGY AND MANAGEMENT, 2019, 454
作者:  Templeton, Laura K.;  Neel, Maile C.;  Groffman, Peter M.;  Cadenasso, Mary L.;  Sullivan, Joe H.
收藏  |  浏览/下载:13/0  |  提交时间:2020/02/17
Urban forest  Urban ecology  Beta diversity  Alpha diversity  Species turnover  Baltimore ecosystem study  
Evidence for large carbon sink and long residence time in semiarid forests based on 15 year flux and inventory records 期刊论文
GLOBAL CHANGE BIOLOGY, 2019
作者:  Qubaja, Rafat;  Grunzweig, Jose M.;  Rotenberg, Eyal;  Yakir, Dan
收藏  |  浏览/下载:13/0  |  提交时间:2020/02/17
carbon sequestration  carbon sink  carbon turnover time  ecosystem productivity  semiarid  soil carbon  
Spatio-temporal dynamics of seedling communities are determined by seed input and habitat filtering in a subtropical montane forest 期刊论文
FOREST ECOLOGY AND MANAGEMENT, 2019, 449
作者:  Xu, Yaozhan;  Wan, Dan;  Xiao, Zhiqiang;  Wu, Hao;  Jiang, Mingxi
收藏  |  浏览/下载:8/0  |  提交时间:2019/11/27
Species turnover  Species reordering  Species richness  Directional change  Habitat filtering  Forest dynamics plot  
Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity 期刊论文
GLOBAL CHANGE BIOLOGY, 2019
作者:  Prommer, Judith;  Walker, Tom W. N.;  Wanek, Wolfgang;  Braun, Judith;  Zezula, David;  Hu, Yuntao;  Hofhansl, Florian;  Richter, Andreas
收藏  |  浏览/下载:14/0  |  提交时间:2019/11/27
microbial activity  microbial carbon use efficiency  microbial necromass  microbial turnover  plant diversity  soil organic carbon