GSTDTAP

浏览/检索结果: 共36条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Synthesis and properties of free-standing monolayer amorphous carbon 期刊论文
NATURE, 2020, 577 (7789) : 199-+
作者:  Toh, Chee-Tat;  Zhang, Hongji;  Lin, Junhao;  Mayorov, Alexander S.;  Wang, Yun-Peng;  Orofeo, Carlo M.;  Ferry, Darim Badur;  Andersen, Henrik;  Kakenov, Nurbek;  Guo, Zenglong;  Abidi, Irfan Haider;  Sims, Hunter;  Suenaga, Kazu;  Pantelides, Sokrates T.;  Ozyilmaz, Barbaros
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Bulk amorphous materials have been studied extensively and are widely used, yet their atomic arrangement remains an open issue. Although they are generally believed to be Zachariasen continuous random networks(1), recent experimental evidence favours the competing crystallite model in the case of amorphous silicon(2-4). In two-dimensional materials, however, the corresponding questions remain unanswered. Here we report the synthesis, by laser-assisted chemical vapour deposition(5), of centimetre-scale, free-standing, continuous and stable monolayer amorphous carbon, topologically distinct from disordered graphene. Unlike in bulk materials, the structure of monolayer amorphous carbon can be determined by atomic-resolution imaging. Extensive characterization by Raman and X-ray spectroscopy and transmission electron microscopy reveals the complete absence of long-range periodicity and a threefold-coordinated structure with a wide distribution of bond lengths, bond angles, and five-, six-, seven- and eight-member rings. The ring distribution is not a Zachariasen continuous random network, but resembles the competing (nano)crystallite model(6). We construct a corresponding model that enables density-functional-theory calculations of the properties of monolayer amorphous carbon, in accordance with observations. Direct measurements confirm that it is insulating, with resistivity values similar to those of boron nitride grown by chemical vapour deposition. Free-standing monolayer amorphous carbon is surprisingly stable and deforms to a high breaking strength, without crack propagation from the point of fracture. The excellent physical properties of this stable, free-standing monolayer amorphous carbon could prove useful for permeation and diffusion barriers in applications such as magnetic recording devices and flexible electronics.


  
Population flow drives spatio-temporal distribution of COVID-19 in China 期刊论文
NATURE, 2020
作者:  Fernandez, Diego Carlos;  Komal, Ruchi;  Langel, Jennifer;  Ma, Jun;  Duy, Phan Q.;  Penzo, Mario A.;  Zhao, Haiqing;  Hattar, Samer
收藏  |  浏览/下载:70/0  |  提交时间:2020/07/03

Sudden, large-scale and diffuse human migration can amplify localized outbreaks of disease into widespread epidemics(1-4). Rapid and accurate tracking of aggregate population flows may therefore be epidemiologically informative. Here we use 11,478,484 counts of mobile phone data from individuals leaving or transiting through the prefecture of Wuhan between 1 January and 24 January 2020 as they moved to 296 prefectures throughout mainland China. First, we document the efficacy of quarantine in ceasing movement. Second, we show that the distribution of population outflow from Wuhan accurately predicts the relative frequency and geographical distribution of infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) until 19 February 2020, across mainland China. Third, we develop a spatio-temporal '  risk source'  model that leverages population flow data (which operationalize the risk that emanates from epidemic epicentres) not only to forecast the distribution of confirmed cases, but also to identify regions that have a high risk of transmission at an early stage. Fourth, we use this risk source model to statistically derive the geographical spread of COVID-19 and the growth pattern based on the population outflow from Wuhan  the model yields a benchmark trend and an index for assessing the risk of community transmission of COVID-19 over time for different locations. This approach can be used by policy-makers in any nation with available data to make rapid and accurate risk assessments and to plan the allocation of limited resources ahead of ongoing outbreaks.


Modelling of population flows in China enables the forecasting of the distribution of confirmed cases of COVID-19 and the identification of areas at high risk of SARS-CoV-2 transmission at an early stage.


  
Ionic solids from common colloids 期刊论文
NATURE, 2020, 580 (7804) : 487-+
作者:  Delord, T.;  Huillery, P.;  Nicolas, L.;  Hetet, G.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/03

Oppositely charged colloidal particles are assembled in water through an approach that allows electrostatic interactions to be precisely tuned to generate macroscopic single crystals.


From rock salt to nanoparticle superlattices, complex structure can emerge from simple building blocks that attract each other through Coulombic forces(1-4). On the micrometre scale, however, colloids in water defy the intuitively simple idea of forming crystals from oppositely charged partners, instead forming non-equilibrium structures such as clusters and gels(5-7). Although various systems have been engineered to grow binary crystals(8-11), native surface charge in aqueous conditions has not been used to assemble crystalline materials. Here we form ionic colloidal crystals in water through an approach that we refer to as polymer-attenuated Coulombic self-assembly. The key to crystallization is the use of a neutral polymer to keep particles separated by well defined distances, allowing us to tune the attractive overlap of electrical double layers, directing particles to disperse, crystallize or become permanently fixed on demand. The nucleation and growth of macroscopic single crystals is demonstrated by using the Debye screening length to fine-tune assembly. Using a variety of colloidal particles and commercial polymers, ionic colloidal crystals isostructural to caesium chloride, sodium chloride, aluminium diboride and K4C60 are selected according to particle size ratios. Once fixed by simply diluting out solution salts, crystals are pulled out of the water for further manipulation, demonstrating an accurate translation from solution-phase assembly to dried solid structures. In contrast to other assembly approaches, in which particles must be carefully engineered to encode binding information(12-18), polymer-attenuated Coulombic self-assembly enables conventional colloids to be used as model colloidal ions, primed for crystallization.


  
Spatiotemporal changes of drought characteristics and their dynamic drivers in Canada 期刊论文
ATMOSPHERIC RESEARCH, 2020, 232
作者:  Yang, Yang;  Gan, Thian Yew;  Tan, Xuezhi
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
Drought characteristics  Standardized Precipitation Evapotranspiration  Index  Dynamic linear model  Large-scale climate drivers  Canada  
Nagaoka ferromagnetism observed in a quantum dot plaquette 期刊论文
NATURE, 2020, 579 (7800) : 528-533
作者:  Yu, Yong;  Ma, Fei;  Luo, Xi-Yu;  Jing, Bo;  Sun, Peng-Fei;  Fang, Ren-Zhou;  Yang, Chao-Wei;  Liu, Hui;  Zheng, Ming-Yang;  Xie, Xiu-Ping;  Zhang, Wei-Jun;  You, Li-Xing;  Wang, Zhen;  Chen, Teng-Yun;  Zhang, Qiang;  Bao, Xiao-Hui;  Pan, Jian-Wei
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

A quantum dot device designed to host four electrons is used to demonstrate Nagaoka ferromagnetism-a model of itinerant magnetism that has so far been limited to theoretical investigation.


Engineered, highly controllable quantum systems are promising simulators of emergent physics beyond the simulation capabilities of classical computers(1). An important problem in many-body physics is itinerant magnetism, which originates purely from long-range interactions of free electrons and whose existence in real systems has been debated for decades(2,3). Here we use a quantum simulator consisting of a four-electron-site square plaquette of quantum dots(4) to demonstrate Nagaoka ferromagnetism(5). This form of itinerant magnetism has been rigorously studied theoretically(6-9) but has remained unattainable in experiments. We load the plaquette with three electrons and demonstrate the predicted emergence of spontaneous ferromagnetic correlations through pairwise measurements of spin. We find that the ferromagnetic ground state is remarkably robust to engineered disorder in the on-site potentials and we can induce a transition to the low-spin state by changing the plaquette topology to an open chain. This demonstration of Nagaoka ferromagnetism highlights that quantum simulators can be used to study physical phenomena that have not yet been observed in any experimental system. The work also constitutes an important step towards large-scale quantum dot simulators of correlated electron systems.


  
Inertial Effects During the Process of Supercritical CO2 Displacing Brine in a Sandstone: Lattice Boltzmann Simulations Based on the Continuum-Surface-Force and Geometrical Wetting Models 期刊论文
WATER RESOURCES RESEARCH, 2019, 55 (12) : 11144-11165
作者:  Chen, Yu;  Valocchi, Albert J.;  Kang, Qinjun;  Viswanathan, Hari S.
收藏  |  浏览/下载:10/0  |  提交时间:2020/02/16
inertial effects  lattice Boltzmann method  geometrical wetting model  special t4ht@  CO2 sequestration  pore-scale simulation  continuum-surface-force model  
Dynamical downscaling over the complex terrain of southwest South America: present climate conditions and added value analysis 期刊论文
CLIMATE DYNAMICS, 2019, 53 (11) : 6745-6767
作者:  Bozkurt, Deniz;  Rojas, Maisa;  Pablo Boisier, Juan;  Rondanelli, Roberto;  Garreaud, Rene;  Gallardo, Laura
收藏  |  浏览/下载:12/0  |  提交时间:2020/02/17
Model evaluation  Temporal-spatial scale analysis  Climate variability  Chile  Patagonia  Atacama Desert  
Decadal long convection-permitting regional climate simulations over eastern China: evaluation of diurnal cycle of precipitation 期刊论文
CLIMATE DYNAMICS, 2019
作者:  Guo, Ziyue;  Fang, Juan;  Sun, Xuguang;  Tang, Jie;  Yang, Yi;  Tang, Jianping
收藏  |  浏览/下载:14/0  |  提交时间:2020/02/17
Regional climate model  Convection-permitting scale  Diurnal cycle  Precipitation characteristics  
A coupled moisture-dynamics model of the Madden-Julian oscillation: convection interaction with first and second baroclinic modes and planetary boundary layer 期刊论文
CLIMATE DYNAMICS, 2019, 53: 5529-5546
作者:  Li, Tim;  Hu, Feng
收藏  |  浏览/下载:11/0  |  提交时间:2019/11/27
MJO theoretical model  A coupled moisture-dynamics mode  Eastward propagation  Planetary scale selection  Stratiform cloud  
Improving the simulation of the climatology of the East Asian summer monsoon by coupling the Stochastic Multicloud Model to the ECHAM6.3 atmosphere model 期刊论文
CLIMATE DYNAMICS, 2019, 53: 2061-2081
作者:  Ma, Libin;  Zhu, Zhiwei;  Li, Juan;  Cao, Jian
收藏  |  浏览/下载:7/0  |  提交时间:2019/11/27
East Asian summer monsoon  Stochastic Multicloud Model  Large-scale circulation  Land-sea thermal contrast  Meridional temperature gradient  ECHAM6  3 atmospheric model