GSTDTAP  > 资源环境科学
DOI10.1029/2019WR025746
Inertial Effects During the Process of Supercritical CO2 Displacing Brine in a Sandstone: Lattice Boltzmann Simulations Based on the Continuum-Surface-Force and Geometrical Wetting Models
Chen, Yu1; Valocchi, Albert J.2; Kang, Qinjun1; Viswanathan, Hari S.1
2019-12-23
发表期刊WATER RESOURCES RESEARCH
ISSN0043-1397
EISSN1944-7973
出版年2019
卷号55期号:12页码:11144-11165
文章类型Article
语种英语
国家USA
英文摘要

Inertial effects during the process of supercritical CO2 displacing brine in porous media may not be negligible according to recent studies. Capturing the inertial effects of the physical CO2-brine system imposes a requirement on the grid resolution and viscosity to surface tension ratio for pore-scale simulations, which some commonly used simulators may not be able to meet. To fulfill the parameter requirement, we combine the continuum-surface-force based color-gradient lattice Boltzmann (LB) multiphase model and the geometrical wetting model and extend the model to 3D under the multiple-relaxation-time framework. We validate the model via simple benchmarks which show significant improvement over the traditional models. We then perform 3D drainage simulations in a heterogeneous micromodel where the simulation result agrees well with experimental data, while our previous work fails to reproduce certain displacement patterns in the experiment due to the use of a traditional LB model that cannot fulfill the parameter requirement. Finally, we perform high-fidelity 3D drainage simulations to study the inertial effects in a Bentheimer sandstone sample. Our results show that stronger inertial effects generally help develop more CO2 flow pathways for the same capillary number which results in higher CO2 saturation, consistent with the micromodel results. The phenomena can be found in both low and high capillary number cases, indicating that the inertial effects are not dependent on the mean velocity. In addition, the change of the invasion patterns is not proportional to the change of inertial effects, thus exhibiting threshold behavior.


英文关键词inertial effects lattice Boltzmann method geometrical wetting model special t4ht@ CO2 sequestration pore-scale simulation continuum-surface-force model
领域资源环境
收录类别SCI-E
WOS记录号WOS:000503926600001
WOS关键词POROUS-MEDIA ; 2-PHASE FLOW ; IMMISCIBLE DISPLACEMENTS ; HYSTERESIS ; BOUNDARY ; RECOVERY ; FIELD
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/223999
专题资源环境科学
作者单位1.Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA;
2.Univ Illinois, Dept Civil & Environm Engn, Urbana, IL USA
推荐引用方式
GB/T 7714
Chen, Yu,Valocchi, Albert J.,Kang, Qinjun,et al. Inertial Effects During the Process of Supercritical CO2 Displacing Brine in a Sandstone: Lattice Boltzmann Simulations Based on the Continuum-Surface-Force and Geometrical Wetting Models[J]. WATER RESOURCES RESEARCH,2019,55(12):11144-11165.
APA Chen, Yu,Valocchi, Albert J.,Kang, Qinjun,&Viswanathan, Hari S..(2019).Inertial Effects During the Process of Supercritical CO2 Displacing Brine in a Sandstone: Lattice Boltzmann Simulations Based on the Continuum-Surface-Force and Geometrical Wetting Models.WATER RESOURCES RESEARCH,55(12),11144-11165.
MLA Chen, Yu,et al."Inertial Effects During the Process of Supercritical CO2 Displacing Brine in a Sandstone: Lattice Boltzmann Simulations Based on the Continuum-Surface-Force and Geometrical Wetting Models".WATER RESOURCES RESEARCH 55.12(2019):11144-11165.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Yu]的文章
[Valocchi, Albert J.]的文章
[Kang, Qinjun]的文章
百度学术
百度学术中相似的文章
[Chen, Yu]的文章
[Valocchi, Albert J.]的文章
[Kang, Qinjun]的文章
必应学术
必应学术中相似的文章
[Chen, Yu]的文章
[Valocchi, Albert J.]的文章
[Kang, Qinjun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。