GSTDTAP

浏览/检索结果: 共347条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
WCRP报告讨论CORDEX的未来科学挑战 快报文章
气候变化快报,2021年第11期
作者:  刘燕飞
Microsoft Word(21Kb)  |  收藏  |  浏览/下载:511/0  |  提交时间:2021/06/05
CORDEX  Scientific Challenges  regional climate modeling  
2100年格陵兰冰盖融化可能导致海平面上升约18cm 快报文章
资源环境快报,2020年第24期
作者:  董利苹
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:471/0  |  提交时间:2020/12/31
Greenland Ice Sheet  Sea Level Rise  CMIP6  Regional Climate Models  
Evaluation of the EURO-CORDEX Regional Climate Models Over the Iberian Peninsula: Observational Uncertainty Analysis 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (12)
作者:  Herrera, S.;  Soares, P. M. M.;  Cardoso, R. M.;  Gutierrez, J. M.
收藏  |  浏览/下载:13/0  |  提交时间:2020/08/18
observational uncertainty  regional climate models  ensemble  extremes  Iberia01  CORDEX  
Methodology of the Constraint Condition in Dynamical Downscaling for Regional Climate Evaluation: A Review 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (11)
作者:  Adachi, S. A.;  Tomita, H.
收藏  |  浏览/下载:7/0  |  提交时间:2020/08/18
dynamical downscaling method  regional climate change  review  
The role of the surface evapotranspiration in regional climate modelling: Evaluation and near-term future changes 期刊论文
ATMOSPHERIC RESEARCH, 2020, 237
作者:  Garcia-Valdecasas Ojeda, Matilde;  Jose Rosa-Canovas, Juan;  Romero-Jimenez, Emilio;  Yeste, P.;  Gamiz-Fortis, Sonia R.;  Castro-Diez, Yolanda;  Jesus Esteban-Parra, Maria
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/02
Surface evapotranspiration  Land-surface processes  Regional climate simulations  Weather research and forecasting  Iberian Peninsula  
Reductions in daily continental-scale atmospheric circulation biases between generations of global climate models: CMIP5 to CMIP6 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (6)
作者:  Cannon, Alex J.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
climate model  atmospheric circulation  model evaluation  regional climate  global climate  
A tale of two futures: contrasting scenarios of future precipitation for West Africa from an ensemble of regional climate models 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (6)
作者:  Dosio, Alessandro;  Turner, Andrew G.;  Tamoffo, Alain T.;  Sylla, Mouhamadou Bamba;  Lennard, Christopher;  Jones, Richard G.;  Terray, Laurent;  Nikulin, Grigory;  Hewitson, Bruce
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/02
West Africa  Sahel  CORDEX  regional climate models  moisture budget equation  
Human influence has intensified extreme precipitation in North America 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (24) : 13308-13313
作者:  Kirchmeier-Young, Megan C.;  Zhang, Xuebin
收藏  |  浏览/下载:6/0  |  提交时间:2020/06/09
extreme precipitation  attribution  regional climate change  
Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018 期刊论文
NATURE, 2020, 581 (7808) : 294-+
作者:  Ibrahim, Nizar;  Maganuco, Simone;  Dal Sasso, Cristiano;  Fabbri, Matteo;  Auditore, Marco;  Bindellini, Gabriele;  Martill, David M.;  Zouhri, Samir;  Mattarelli, Diego A.;  Unwin, David M.;  Wiemann, Jasmina;  Bonadonna, Davide;  Amane, Ayoub;  Jakubczak, Juliana;  Joger, Ulrich;  Lauder, George V.;  Pierce, Stephanie E.
收藏  |  浏览/下载:18/0  |  提交时间:2020/05/25

Warming surface temperatures have driven a substantial reduction in the extent and duration of Northern Hemisphere snow cover(1-3). These changes in snow cover affect Earth'  s climate system via the surface energy budget, and influence freshwater resources across a large proportion of the Northern Hemisphere(4-6). In contrast to snow extent, reliable quantitative knowledge on seasonal snow mass and its trend is lacking(7-9). Here we use the new GlobSnow 3.0 dataset to show that the 1980-2018 annual maximum snow mass in the Northern Hemisphere was, on average, 3,062 +/- 35 billion tonnes (gigatonnes). Our quantification is for March (the month that most closely corresponds to peak snow mass), covers non-alpine regions above 40 degrees N and, crucially, includes a bias correction based on in-field snow observations. We compare our GlobSnow 3.0 estimates with three independent estimates of snow mass, each with and without the bias correction. Across the four datasets, the bias correction decreased the range from 2,433-3,380 gigatonnes (mean 2,867) to 2,846-3,062 gigatonnes (mean 2,938)-a reduction in uncertainty from 33% to 7.4%. On the basis of our bias-corrected GlobSnow 3.0 estimates, we find different continental trends over the 39-year satellite record. For example, snow mass decreased by 46 gigatonnes per decade across North America but had a negligible trend across Eurasia  both continents exhibit high regional variability. Our results enable a better estimation of the role of seasonal snow mass in Earth'  s energy, water and carbon budgets.


Applying a bias correction to a state-of-the-art dataset covering non-alpine regions of the Northern Hemisphere and to three other datasets yields a more constrained quantification of snow mass in March from 1980 to 2018.


  
A Large Ensemble Approach to Quantifying Internal Model Variability Within the WRF Numerical Model 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (7)
作者:  Bassett, R.;  Young, P. J.;  Blair, G. S.;  Samreen, F.;  Simm, W.
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/02
ensemble  initial conditions  internal model variability (IMV)  regional climate model (RCM)  uncertainty  Weather Research and Forecasting (WRF)