GSTDTAP  > 气候变化
DOI10.1029/2019JD031286
A Large Ensemble Approach to Quantifying Internal Model Variability Within the WRF Numerical Model
Bassett, R.1; Young, P. J.1,2; Blair, G. S.2,3; Samreen, F.3; Simm, W.3
2020-04-16
发表期刊JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
ISSN2169-897X
EISSN2169-8996
出版年2020
卷号125期号:7
文章类型Article
语种英语
国家England
英文摘要

The Weather Research and Forecasting (WRF) community model is widely used to explore cross-scale atmospheric features. Although WRF uncertainty studies exist, these usually involve ensembles where different physics options are selected (e.g., the boundary layer scheme) or adjusting individual parameters. Uncertainty from perturbing initial conditions, which generates internal model variability (IMV), has rarely been considered. Moreover, many off-line WRF research studies generate conclusions based on a single model run without addressing any form of uncertainty. To demonstrate the importance of IMV, or noise, we present a 4-month case study of summer 2018 over London, UK, using a 244-member initial condition ensemble. Simply by changing the model start time, a median 2-m temperature range or IMV of 1.2 degrees C was found (occasionally exceeding 8 degrees C). During our analysis, episodes of high and low IMV were found for all variables explored, explained by a relationship with the boundary condition data. Periods of slower wind speed input contained increased IMV, and vice versa, which we hypothesis is related to how strongly the boundary conditions influence the nested region. We also show the importance of IMV effects for the uncertainty of derived variables like the urban heat island, whose median variation in magnitude is 1 degrees C. Finally, a realistic ensemble size to capture the majority of WRF IMV is also estimated, essential considering the high computational overheads (244 members equaled 140,000 CPU hours). We envisage that highlighting considerable IMV in this repeatable manner will help advance best practices for the WRF and wider regional climate modeling community.


英文关键词ensemble initial conditions internal model variability (IMV) regional climate model (RCM) uncertainty Weather Research and Forecasting (WRF)
领域气候变化
收录类别SCI-E
WOS记录号WOS:000526643500019
WOS关键词URBAN HEAT-ISLAND ; WEATHER SYNOPTIC CONDITIONS ; BOUNDARY-LAYER STRUCTURES ; SINGLE-LAYER ; INITIAL CONDITIONS ; CENTRAL LONDON ; CANOPY MODEL ; LAND-USE ; CLIMATE ; IMPACT
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/280170
专题气候变化
作者单位1.Univ Lancaster, Lancaster Environm Ctr, Lancaster, England;
2.Univ Lancaster, Data Sci Inst, Lancaster, England;
3.Univ Lancaster, Sch Comp & Commun, Lancaster, England
推荐引用方式
GB/T 7714
Bassett, R.,Young, P. J.,Blair, G. S.,et al. A Large Ensemble Approach to Quantifying Internal Model Variability Within the WRF Numerical Model[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2020,125(7).
APA Bassett, R.,Young, P. J.,Blair, G. S.,Samreen, F.,&Simm, W..(2020).A Large Ensemble Approach to Quantifying Internal Model Variability Within the WRF Numerical Model.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,125(7).
MLA Bassett, R.,et al."A Large Ensemble Approach to Quantifying Internal Model Variability Within the WRF Numerical Model".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 125.7(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bassett, R.]的文章
[Young, P. J.]的文章
[Blair, G. S.]的文章
百度学术
百度学术中相似的文章
[Bassett, R.]的文章
[Young, P. J.]的文章
[Blair, G. S.]的文章
必应学术
必应学术中相似的文章
[Bassett, R.]的文章
[Young, P. J.]的文章
[Blair, G. S.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。