GSTDTAP

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
Inertia-Gravity Waves Revealed in Radiosonde Data at Jang Bogo Station, Antarctica (74 degrees 37 ' S, 164 degrees 13 ' E): 2. Potential Sources and Their Relation to Inertia-Gravity Waves 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (7)
作者:  Yoo, J-H;  Song, I-S;  Chun, H-Y;  Song, B-G
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/02
inertia-gravity waves  potential sources  ray tracing  
Massively parallel coherent laser ranging using a soliton microcomb 期刊论文
NATURE, 2020, 581 (7807) : 164-+
作者:  Casanova, Emmanuelle;  Knowles, Timothy D. J.;  Bayliss, Alex;  Dunne, Julie;  Baranski, Marek Z.;  Denaire, Anthony;  Lefranc, Philippe;  di Lernia, Savino;  Roffet-Salque, Melanie;  Smyth, Jessica;  Barclay, Alistair;  Gillard, Toby;  Classen, Erich;  Coles, Bryony;  Ilett, Michael;  Jeunesse, Christian;  Krueger, Marta;  Marciniak, Arkadiusz;  Minnitt, Steve;  Rotunno, Rocco;  van de Velde, Pieter;  van Wijk, Ivo;  Cotton, Jonathan;  Daykin, Andy;  Evershed, Richard P.
收藏  |  浏览/下载:46/0  |  提交时间:2020/07/03

Coherent ranging, also known as frequency-modulated continuous-wave (FMCW) laser-based light detection and ranging (lidar)(1) is used for long-range three-dimensional distance and velocimetry in autonomous driving(2,3). FMCW lidar maps distance to frequency(4,5) using frequency-chirped waveforms and simultaneously measures the Doppler shift of the reflected laser light, similar to sonar or radar(6,7) and coherent detection prevents interference from sunlight and other lidar systems. However, coherent ranging has a lower acquisition speed and requires precisely chirped(8) and highly coherent(5) laser sources, hindering widespread use of the lidar system and impeding parallelization, compared to modern time-of-flight ranging systems that use arrays of individual lasers. Here we demonstrate a massively parallel coherent lidar scheme using an ultra-low-loss photonic chip-based soliton microcomb(9). By fast chirping of the pump laser in the soliton existence range(10) of a microcomb with amplitudes of up to several gigahertz and a sweep rate of up to ten megahertz, a rapid frequency change occurs in the underlying carrier waveform of the soliton pulse stream, but the pulse-to-pulse repetition rate of the soliton pulse stream is retained. As a result, the chirp from a single narrow-linewidth pump laser is transferred to all spectral comb teeth of the soliton at once, thus enabling parallelism in the FMCW lidar. Using this approach we generate 30 distinct channels, demonstrating both parallel distance and velocity measurements at an equivalent rate of three megapixels per second, with the potential to improve sampling rates beyond 150 megapixels per second and to increase the image refresh rate of the FMCW lidar by up to two orders of magnitude without deterioration of eye safety. This approach, when combined with photonic phase arrays(11) based on nanophotonic gratings(12), provides a technological basis for compact, massively parallel and ultrahigh-frame-rate coherent lidar systems.


  
AQP5 enriches for stem cells and cancer origins in the distal stomach 期刊论文
NATURE, 2020, 578 (7795) : 437-+
作者:  Athukoralage, Januka S.;  McMahon, Stephen A.;  Zhang, Changyi;  Grueschow, Sabine;  Graham, Shirley;  Krupovic, Mart;  Whitaker, Rachel J.;  Gloster, Tracey M.;  White, Malcolm F.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

LGR5 marks resident adult epithelial stem cells at the gland base in the mouse pyloric stomach(1), but the identity of the equivalent human stem cell population remains unknown owing to a lack of surface markers that facilitate its prospective isolation and validation. In mouse models of intestinal cancer, LGR5(+) intestinal stem cells are major sources of cancer following hyperactivation of the WNT pathway(2). However, the contribution of pyloric LGR5(+) stem cells to gastric cancer following dysregulation of the WNT pathway-a frequent event in gastric cancer in humans(3)-is unknown. Here we use comparative profiling of LGR5(+) stem cell populations along the mouse gastrointestinal tract to identify, and then functionally validate, the membrane protein AQP5 as a marker that enriches for mouse and human adult pyloric stem cells. We show that stem cells within the AQP5(+) compartment are a source of WNT-driven, invasive gastric cancer in vivo, using newly generated Aqp5-creERT2 mouse models. Additionally, tumour-resident AQP5(+) cells can selectively initiate organoid growth in vitro, which indicates that this population contains potential cancer stem cells. In humans, AQP5 is frequently expressed in primary intestinal and diffuse subtypes of gastric cancer (and in metastases of these subtypes), and often displays altered cellular localization compared with healthy tissue. These newly identified markers and mouse models will be an invaluable resource for deciphering the early formation of gastric cancer, and for isolating and characterizing human-stomach stem cells as a prerequisite for harnessing the regenerative-medicine potential of these cells in the clinic.


AQP5 is identified as a marker for pyloric stem cells in humans and mice, and stem cells in the AQP5(+) compartment are shown to be a source of invasive gastric cancer in mouse models.


  
Demand Response Potential: Available when Needed? 期刊论文
ENERGY POLICY, 2018, 115: 181-198
作者:  Mueller, Theresa;  Moest, Dominik
收藏  |  浏览/下载:0/0  |  提交时间:2019/04/09
Demand Response  Demand Response Potential  Renewable Energy Sources  Energy System Analysis  Load Shedding  Load Shifting  
Realizing the Potential of U.S. Unconventional Natural Gas 科技报告
来源:Center for Strategic and International Studies (CSIS). 出版年: 2013
作者:  Sarah Ladislaw;  David Pumphrey;  Frank A. Verrastro
收藏  |  浏览/下载:2/0  |  提交时间:2019/04/05
Americas  Analysis  Energy and National Security Program  Energy and Sustainability  Innovation and New Energy Sources  Markets  Trends  and Outlooks  Realizing the Potential of U.S. Unconventional Natural Gas