GSTDTAP

浏览/检索结果: 共70条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
The relative importance of plasticity versus genetic differentiation in explaining between population differences; a meta-analysis 期刊论文
ECOLOGY LETTERS, 2020
作者:  Stamp, Megan A.;  Hadfield, Jarrod D.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/14
Counter-gradient variation  Gene-flow  local adaptation  phenotypic plasticity  
Between a rock and a hard place: adaptive sensing and site-specific dispersal 期刊论文
ECOLOGY LETTERS, 2020
作者:  Nichols, Bethany S.;  Leubner-Metzger, Gerhard;  Jansen, Vincent A. A.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/06
Aethionema arabicum  dispersal  environmental variability  plasticity  sensing  
Weather at the winter and stopover areas determines spring migration onset, progress, and advancements in Afro-Palearctic migrant birds 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (29) : 17056-17062
作者:  Haest, Birgen;  Hueppop, Ommo;  Bairlein, Franz
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/06
phenology  environmental plasticity  microevolution  behavioral flexibility  conservation  
Compensating for climate change-induced cue-environment mismatches: evidence for contemporary evolution of a photoperiodic reaction norm in Colias butterflies 期刊论文
ECOLOGY LETTERS, 2020, 23 (7) : 1129-1136
作者:  Nielsen, Matthew E.;  Kingsolver, Joel G.
收藏  |  浏览/下载:9/0  |  提交时间:2020/05/13
Climate change  Colias eurytheme  contemporary evolution  evolutionary trap  melanization  phenotypic plasticity  photoperiod  reaction norm  seasonal mismatch  
Injured adult neurons regress to an embryonic transcriptional growth state 期刊论文
NATURE, 2020, 581 (7806) : 77-+
作者:  Wang, Ruicong;  Li, Hongda;  Wu, Jianfeng;  Cai, Zhi-Yu;  Li, Baizhou;  Ni, Hengxiao;  Qiu, Xingfeng;  Chen, Hui;  Liu, Wei;  Yang, Zhang-Hua;  Liu, Min;  Hu, Jin;  Liang, Yaoji;  Lan, Ping;  Han, Jiahuai;  Mo, Wei
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

Grafts of spinal-cord-derived neural progenitor cells (NPCs) enable the robust regeneration of corticospinal axons and restore forelimb function after spinal cord injury(1)  however, the molecular mechanisms that underlie this regeneration are unknown. Here we perform translational profiling specifically of corticospinal tract (CST) motor neurons in mice, to identify their '  regenerative transcriptome'  after spinal cord injury and NPC grafting. Notably, both injury alone and injury combined with NPC grafts elicit virtually identical early transcriptomic responses in host CST neurons. However, in mice with injury alone this regenerative transcriptome is downregulated after two weeks, whereas in NPC-grafted mice this transcriptome is sustained. The regenerative transcriptome represents a reversion to an embryonic transcriptional state of the CST neuron. The huntingtin gene (Htt) is a central hub in the regeneration transcriptome  deletion of Htt significantly attenuates regeneration, which shows that Htt has a key role in neural plasticity after injury.


In mouse models of central nervous system injury, Htt is shown to be a key component of the regulatory program associated with reversion of the neuronal transcriptome to a less-mature state.


  
Dopamine D2 receptors in discrimination learning and spine enlargement 期刊论文
NATURE, 2020, 579 (7800) : 555-+
作者:  Luo, Zhaochu;  Hrabec, Ales;  Dao, Trong Phuong;  Sala, Giacomo;  Finizio, Simone;  Feng, Junxiao;  Mayr, Sina;  Raabe, Joerg;  Gambardella, Pietro;  Heyderman, Laura J.
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

Detection of dopamine dips by neurons that express dopamine D2 receptors in the striatum is used to refine generalized reward conditioning mediated by dopamine D1 receptors.


Dopamine D2 receptors (D2Rs) are densely expressed in the striatum and have been linked to neuropsychiatric disorders such as schizophrenia(1,2). High-affinity binding of dopamine suggests that D2Rs detect transient reductions in dopamine concentration (the dopamine dip) during punishment learning(3-5). However, the nature and cellular basis of D2R-dependent behaviour are unclear. Here we show that tone reward conditioning induces marked stimulus generalization in a manner that depends on dopamine D1 receptors (D1Rs) in the nucleus accumbens (NAc) of mice, and that discrimination learning refines the conditioning using a dopamine dip. In NAc slices, a narrow dopamine dip (as short as 0.4 s) was detected by D2Rs to disinhibit adenosine A(2A) receptor (A(2A)R)-mediated enlargement of dendritic spines in D2R-expressing spiny projection neurons (D2-SPNs). Plasticity-related signalling by Ca2+/calmodulin-dependent protein kinase II and A(2A)Rs in the NAc was required for discrimination learning. By contrast, extinction learning did not involve dopamine dips or D2-SPNs. Treatment with methamphetamine, which dysregulates dopamine signalling, impaired discrimination learning and spine enlargement, and these impairments were reversed by a D2R antagonist. Our data show that D2Rs refine the generalized reward learning mediated by D1Rs.


  
Trait plasticity alters the range of possible coexistence conditions in a competition-colonisation trade-off 期刊论文
ECOLOGY LETTERS, 2020, 23 (5) : 791-799
作者:  Muthukrishnan, Ranjan;  Sullivan, Lauren L.;  Shaw, Allison K.;  Forester, James D.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/02
Dispersal  landscape heterogeneity  niche stabilisation  seed size  simulation model  trait plasticity  
High-pressure strengthening in ultrafine-grained metals 期刊论文
NATURE, 2020
作者:  Yoshida, Kenichi;  Gowers, Kate H. C.;  Lee-Six, Henry;  Chandrasekharan, Deepak P.;  Coorens, Tim;  Maughan, Elizabeth F.;  Beal, Kathryn;  Menzies, Andrew;  Millar, Fraser R.;  Anderson, Elizabeth;  Clarke, Sarah E.;  Pennycuick, Adam;  Thakrar, Ricky M.;  Butler, Colin R.
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

High-pressure diamond anvil cell experiments reveal that compression strengthening of nanocrystalline nickel increases as its grain sizes decrease to 3 nanometres, owing to dislocation hardening and suppression of grain boundary plasticity.


The Hall-Petch relationship, according to which the strength of a metal increases as the grain size decreases, has been reported to break down at a critical grain size of around 10 to 15 nanometres(1,2). As the grain size decreases beyond this point, the dominant mechanism of deformation switches from a dislocation-mediated process to grain boundary sliding, leading to material softening. In one previous approach, stabilization of grain boundaries through relaxation and molybdenum segregation was used to prevent this softening effect in nickel-molybdenum alloys with grain sizes below 10 nanometres(3). Here we track in situ the yield stress and deformation texturing of pure nickel samples of various average grain sizes using a diamond anvil cell coupled with radial X-ray diffraction. Our high-pressure experiments reveal continuous strengthening in samples with grain sizes from 200 nanometres down to 3 nanometres, with the strengthening enhanced (rather than reduced) at grain sizes smaller than 20 nanometres. We achieve a yield strength of approximately 4.2 gigapascals in our 3-nanometre-grain-size samples, ten times stronger than that of a commercial nickel material. A maximum flow stress of 10.2 gigapascals is obtained in nickel of grain size 3 nanometres for the pressure range studied here. We see similar patterns of compression strengthening in gold and palladium samples down to the smallest grain sizes. Simulations and transmission electron microscopy reveal that the high strength observed in nickel of grain size 3 nanometres is caused by the superposition of strengthening mechanisms: both partial and full dislocation hardening plus suppression of grain boundary plasticity. These insights contribute to the ongoing search for ultrastrong metals via materials engineering.


  
Climate drives among-year variation in natural selection on flowering time 期刊论文
ECOLOGY LETTERS, 2020, 23 (4) : 653-662
作者:  Ehrlen, Johan;  Valdes, Alicia
收藏  |  浏览/下载:4/0  |  提交时间:2020/07/02
Climate  Lathyrus vernus  phenology  phenotypic plasticity  phenotypic selection  selection gradients  timing of reproduction  
The strength and pattern of natural selection on gene expression in rice 期刊论文
NATURE, 2020, 578 (7796) : 572-+
作者:  Lipson, Mark;  Ribot, Isabelle;  Mallick, Swapan;  Rohland, Nadin;  Olalde, Inigo;  Adamski, Nicole;  Broomandkhoshbacht, Nasreen;  Lawson, Ann Marie;  Lopez, Saioa;  Oppenheimer, Jonas;  Stewardson, Kristin
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/03

Levels of gene expression underpin organismal phenotypes(1,2), but the nature of selection that acts on gene expression and its role in adaptive evolution remain unknown(1,2). Here we assayed gene expression in rice (Oryza sativa)(3), and used phenotypic selection analysis to estimate the type and strength of selection on the levels of more than 15,000 transcripts(4,5). Variation in most transcripts appears (nearly) neutral or under very weak stabilizing selection in wet paddy conditions (with median standardized selection differentials near zero), but selection is stronger under drought conditions. Overall, more transcripts are conditionally neutral (2.83%) than are antagonistically pleiotropic(6) (0.04%), and transcripts that display lower levels of expression and stochastic noise(7-9) and higher levels of plasticity(9) are under stronger selection. Selection strength was further weakly negatively associated with levels of cis-regulation and network connectivity(9). Our multivariate analysis suggests that selection acts on the expression of photosynthesis genes(4,5), but that the efficacy of selection is genetically constrained under drought conditions(10). Drought selected for earlier flowering(11,12) and a higher expression of OsMADS18 (Os07g0605200), which encodes a MADS-box transcription factor and is a known regulator of early flowering(13)-marking this gene as a drought-escape gene(11,12). The ability to estimate selection strengths provides insights into how selection can shape molecular traits at the core of gene action.


Phenotypic selection analysis is used to estimate the type and strength of selection that acts on more than 15,000 transcripts in rice (Oryza sativa), which provides insight into the adaptive evolutionary role of selection on gene expression.