GSTDTAP

浏览/检索结果: 共12条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
国际可持续发展研究所发布能源转型路径及行动建议 快报文章
气候变化快报,2022年第21期
作者:  秦冰雪
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:672/0  |  提交时间:2022/11/04
Energy Transition  Phase-out of Fossil Fuel  
Strain engineering and epitaxial stabilization of halide perovskites 期刊论文
NATURE, 2020, 577 (7789) : 209-+
作者:  Chen, Yimu;  Lei, Yusheng;  Li, Yuheng;  Yu, Yugang;  Cai, Jinze;  Chiu, Ming-Hui;  Rao, Rahul;  Gu, Yue;  Wang, Chunfeng;  Choi, Woojin;  Hu, Hongjie;  Wang, Chonghe;  Li, Yang;  Song, Jiawei;  Zhang, Jingxin;  Qi, Baiyan;  Lin, Muyang;  Zhang, Zhuorui;  Islam, Ahmad E.;  Maruyama, Benji;  Dayeh, Shadi;  Li, Lain-Jong;  Yang, Kesong;  Lo, Yu-Hwa;  Xu, Sheng
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

Strain engineering is a powerful tool with which to enhance semiconductor device performance(1,2). Halide perovskites have shown great promise in device applications owing to their remarkable electronic and optoelectronic properties(3-5). Although applying strain to halide perovskites has been frequently attempted, including using hydrostatic pressurization(6-8), electrostriction(9), annealing(10-12), van der Waals force(13), thermal expansion mismatch(14), and heat-induced substrate phase transition(15), the controllable and device-compatible strain engineering of halide perovskites by chemical epitaxy remains a challenge, owing to the absence of suitable lattice-mismatched epitaxial substrates. Here we report the strained epitaxial growth of halide perovskite single-crystal thin films on lattice-mismatched halide perovskite substrates. We investigated strain engineering of a-formamidinium lead iodide (alpha-FAPbI(3)) using both experimental techniques and theoretical calculations. By tailoring the substrate composition-and therefore its lattice parameter-a compressive strain as high as 2.4 per cent is applied to the epitaxial alpha-FAPbI(3) thin film. We demonstrate that this strain effectively changes the crystal structure, reduces the bandgap and increases the hole mobility of alpha-FAPbI(3). Strained epitaxy is also shown to have a substantial stabilization effect on the alpha-FAPbI(3) phase owing to the synergistic effects of epitaxial stabilization and strain neutralization. As an example, strain engineering is applied to enhance the performance of an alpha-FAPbI(3)-based photodetector.


  
Localization and delocalization of light in photonic moire lattices 期刊论文
NATURE, 2020, 577 (7788) : 42-+
作者:  Wang, Peng;  Zheng, Yuanlin;  Chen, Xianfeng;  Huang, Changming;  Kartashov, Yaroslav V.;  Torner, Lluis;  Konotop, Vladimir V.;  Ye, Fangwei
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

Moire lattices consist of two superimposed identical periodic structures with a relative rotation angle. Moire lattices have several applications in everyday life, including artistic design, the textile industry, architecture, image processing, metrology and interferometry. For scientific studies, they have been produced using coupled graphene-hexagonal boron nitride monolayers(1,2), graphene-graphene layers(3,4) and graphene quasicrystals on a silicon carbide surface(5). The recent surge of interest in moire lattices arises from the possibility of exploring many salient physical phenomena in such systems  examples include commensurable-incommensurable transitions and topological defects(2), the emergence of insulating states owing to band flattening(3,6), unconventional superconductivity(4) controlled by the rotation angle(7,8), the quantum Hall effect(9), the realization of non-Abelian gauge potentials(10) and the appearance of quasicrystals at special rotation angles(11). A fundamental question that remains unexplored concerns the evolution of waves in the potentials defined by moire lattices. Here we experimentally create two-dimensional photonic moire lattices, which-unlike their material counterparts-have readily controllable parameters and symmetry, allowing us to explore transitions between structures with fundamentally different geometries (periodic, general aperiodic and quasicrystal). We observe localization of light in deterministic linear lattices that is based on flatband physics(6), in contrast to previous schemes based on light diffusion in optical quasicrystals(12), where disorder is required(13) for the onset of Anderson localization(14) (that is, wave localization in random media). Using commensurable and incommensurable moire patterns, we experimentally demonstrate the twodimensional localization-delocalization transition of light. Moire lattices may feature an almost arbitrary geometry that is consistent with the crystallographic symmetry groups of the sublattices, and therefore afford a powerful tool for controlling the properties of light patterns and exploring the physics of periodic-aperiodic phase transitions and two-dimensional wavepacket phenomena relevant to several areas of science, including optics, acoustics, condensed matter and atomic physics.


  
Discovery of New-Structured Post-Spinel MgFe2O4: Crystal Structure and High-Pressure Phase Relations 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (6)
作者:  Ishii, Takayuki;  Miyajima, Nobuyoshi;  Sinmyo, Ryosuke;  Kojitani, Hiroshi;  Mori, Daisuke;  Inaguma, Yoshiyuki;  Akaogi, Masaki
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
high pressure  Rietveld analysis  phase transition  spinel  mantle  magnesioferrite  
Simulation of Hubbard model physics in WSe2/WS2 moire superlattices 期刊论文
NATURE, 2020, 579 (7799) : 353-+
作者:  Stein, Reed M.;  Kang, Hye Jin;  McCorvy, John D.;  Glatfelter, Grant C.;  Jones, Anthony J.;  Che, Tao;  Slocum, Samuel;  Huang, Xi-Ping;  Savych, Olena;  Moroz, Yurii S.;  Stauch, Benjamin;  Johansson, Linda C.;  Cherezov, Vadim;  Kenakin, Terry;  Irwin, John J.;  Shoichet, Brian K.;  Roth, Bryan L.;  Dubocovich, Margarita L.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Study of WSe2/WS2 moire superlattices reveals the phase diagram of the triangular-lattice Hubbard model, including a Mott insulating state at half-filling and a possible magnetic quantum phase transition near 0.6 filling.


The Hubbard model, formulated by physicist John Hubbard in the 1960s(1), is a simple theoretical model of interacting quantum particles in a lattice. The model is thought to capture the essential physics of high-temperature superconductors, magnetic insulators and other complex quantum many-body ground states(2,3). Although the Hubbard model provides a greatly simplified representation of most real materials, it is nevertheless difficult to solve accurately except in the one-dimensional case(2,3). Therefore, the physical realization of the Hubbard model in two or three dimensions, which can act as an analogue quantum simulator (that is, it can mimic the model and simulate its phase diagram and dynamics(4,5)), has a vital role in solving the strong-correlation puzzle, namely, revealing the physics of a large number of strongly interacting quantum particles. Here we obtain the phase diagram of the two-dimensional triangular-lattice Hubbard model by studying angle-aligned WSe2/WS2 bilayers, which form moire superlattices(6) because of the difference between the lattice constants of the two materials. We probe the charge and magnetic properties of the system by measuring the dependence of its optical response on an out-of-plane magnetic field and on the gate-tuned carrier density. At half-filling of the first hole moire superlattice band, we observe a Mott insulating state with antiferromagnetic Curie-Weiss behaviour, as expected for a Hubbard model in the strong-interaction regime(2,3,7-9). Above half-filling, our experiment suggests a possible quantum phase transition from an antiferromagnetic to a weak ferromagnetic state at filling factors near 0.6. Our results establish a new solid-state platform based on moire superlattices that can be used to simulate problems in strong-correlation physics that are described by triangular-lattice Hubbard models.


  
Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide 期刊论文
NATURE, 2020, 578 (7796) : 545-+
作者:  Kum, Hyun S.;  Lee, Hyungwoo;  Kim, Sungkyu;  Lindemann, Shane;  Kong, Wei;  Qiao, Kuan;  Chen, Peng;  Irwin, Julian;  Lee, June Hyuk;  Xie, Saien;  Subramanian, Shruti;  Shim, Jaewoo;  Bae, Sang-Hoon;  Choi, Chanyeol;  Ranno, Luigi;  Seo, Seungju;  Lee, Sangho;  Bauer, Jackson;  Li, Huashan;  Lee, Kyusang;  Robinson, Joshua A.;  Ross, Caroline A.;  Schlom, Darrell G.;  Rzchowski, Mark S.;  Eom, Chang-Beom;  Kim, Jeehwan
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Chirality is ubiquitous in nature, and populations of opposite chiralities are surprisingly asymmetric at fundamental levels(1,2). Examples range from parity violation in the subatomic weak force to homochirality in biomolecules. The ability to achieve chirality-selective synthesis (chiral induction) is of great importance in stereochemistry, molecular biology and pharmacology(2). In condensed matter physics, a crystalline electronic system is geometrically chiral when it lacks mirror planes, space-inversion centres or rotoinversion axes(1). Typically, geometrical chirality is predefined by the chiral lattice structure of a material, which is fixed on formation of the crystal. By contrast, in materials with gyrotropic order(3-6), electrons spontaneously organize themselves to exhibit macroscopic chirality in an originally achiral lattice. Although such order-which has been proposed as the quantum analogue of cholesteric liquid crystals-has attracted considerable interest(3-15), no clear observation or manipulation of gyrotropic order has been achieved so far. Here we report the realization of optical chiral induction and the observation of a gyrotropically ordered phase in the transition-metal dichalcogenide semimetal 1T-TiSe2. We show that shining mid-infrared circularly polarized light on 1T-TiSe2 while cooling it below the critical temperature leads to the preferential formation of one chiral domain. The chirality of this state is confirmed by the measurement of an out-of-plane circular photogalvanic current, the direction of which depends on the optical induction. Although the role of domain walls requires further investigation with local probes, the methodology demonstrated here can be applied to realize and control chiral electronic phases in other quantum materials(4,16).


Optical chiral induction and spontaneous gyrotropic electronic order are realized in the transition-metal chalcogenide 1T-TiSe2 by using illumination with mid-infrared circularly polarized light and simultaneous cooling below the critical temperature.


  
Conversion of non-van der Waals solids to 2D transition-metal chalcogenides 期刊论文
NATURE, 2020, 577 (7791) : 492-+
作者:  Du, Zhiguo;  Yang, Shubin;  Li, Songmei;  Lou, Jun;  Zhang, Shuqing;  Wang, Shuai;  Li, Bin;  Gong, Yongji;  Song, Li;  Zou, Xiaolong;  Ajayan, Pulickel M.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

A synthetic approach is described, for efficiently converting non-van der Waals solids into two-dimensional van der Waals transition-metal chalcogenide layers with specific phases, enabling the high-throughput production of monolayers.


Although two-dimensional (2D) atomic layers, such as transition-metal chalcogenides, have been widely synthesized using techniques such as exfoliation(1-3) and vapour-phase growth(4,5), it is still challenging to obtain phase-controlled 2D structures(6-8). Here we demonstrate an effective synthesis strategy via the progressive transformation of non-van der Waals (non-vdW) solids to 2D vdW transition-metal chalcogenide layers with identified 2H (trigonal prismatic)/1T (octahedral) phases. The transformation, achieved by exposing non-vdW solids to chalcogen vapours, can be controlled using the enthalpies and vapour pressures of the reaction products. Heteroatom-substituted (such as yttrium and phosphorus) transition-metal chalcogenides can also be synthesized in this way, thus enabling a generic synthesis approach to engineering phase-selected 2D transition-metal chalcogenide structures with good stability at high temperatures (up to 1,373 kelvin) and achieving high-throughput production of monolayers. We anticipate that these 2D transition-metal chalcogenides will have broad applications for electronics, catalysis and energy storage.


  
A Speed Limit on Ice Shelf Collapse Through Hydrofracture 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2019
作者:  Robel, Alexander A.;  Banwell, Alison F.
收藏  |  浏览/下载:4/0  |  提交时间:2019/11/27
ice shelf  collapse  instability  criticality  phase transition  
Discursive resistance to phasing out coal-fired electricity: Narratives in Japan's coal regime 期刊论文
ENERGY POLICY, 2019, 132: 782-796
作者:  Trencher, Gregory;  Healy, Noel;  Hasegawa, Koichi;  Asuka, Jusen
收藏  |  浏览/下载:7/0  |  提交时间:2019/11/27
Coal  Japanese energy policy  Fossil fuels phase-out  Energy transition  Fossil fuel regimes  Narratives  
Convective Self-Aggregation As a Cold Pool-Driven Critical Phenomenon 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (7) : 4017-4028
作者:  Haerter, Jan O.
收藏  |  浏览/下载:4/0  |  提交时间:2019/11/26
self-aggregation  convection  cloud  thunderstorm  critical phenomenon  phase transition