GSTDTAP

浏览/检索结果: 共7条,第1-7条 帮助

已选(0)清除 条数/页:   排序方式:
美研究人员首次通过模拟地球外核中富硅沉积形成过程证实ULVZs的核源机制 快报文章
地球科学快报,2023年第05期
作者:  张树良
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:659/0  |  提交时间:2023/03/10
Earth’s outer core  silicon-rich alloy crystallization  CMB  ULVZs  
地震波揭示地球外核的变化 快报文章
地球科学快报,2022年第14期
作者:  王晓晨
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:639/0  |  提交时间:2022/07/25
SKS wave  Earth's outer core  
A remnant planetary core in the hot-Neptune desert 期刊论文
NATURE, 2020, 583 (7814) : 39-+
作者:  David J. Armstrong;  Thé;  o A. Lopez;  Vardan Adibekyan;  Richard A. Booth;  Edward M. Bryant;  Karen A. Collins;  Magali Deleuil;  Alexandre Emsenhuber;  Chelsea X. Huang;  George W. King;  Jorge Lillo-Box;  Jack J. Lissauer;  Elisabeth Matthews;  Olivier Mousis;  Louise D. Nielsen;  Hugh Osborn;  Jon Otegi;  Nuno C. Santos;  ;  rgio G. Sousa;  Keivan G. Stassun;  Dimitri Veras;  Carl Ziegler;  Jack S. Acton;  Jose M. Almenara;  David R. Anderson;  David Barrado;  Susana C. C. Barros;  Daniel Bayliss;  Claudia Belardi;  Francois Bouchy;  ;  sar Briceñ;  o;  Matteo Brogi;  David J. A. Brown;  Matthew R. Burleigh;  Sarah L. Casewell;  Alexander Chaushev;  David R. Ciardi;  Kevin I. Collins;  Knicole D. Coló;  n;  Benjamin F. Cooke;  Ian J. M. Crossfield;  Rodrigo F. Dí;  az;  Elisa Delgado Mena;  Olivier D. S. Demangeon;  Caroline Dorn;  Xavier Dumusque;  Philipp Eigmü;  ller;  Michael Fausnaugh;  Pedro Figueira;  Tianjun Gan;  Siddharth Gandhi;  Samuel Gill;  Erica J. Gonzales;  Michael R. Goad;  Maximilian N. Gü;  nther;  Ravit Helled;  Saeed Hojjatpanah;  Steve B. Howell;  James Jackman;  James S. Jenkins;  Jon M. Jenkins;  Eric L. N. Jensen;  Grant M. Kennedy;  David W. Latham;  Nicholas Law;  Monika Lendl;  Michael Lozovsky;  Andrew W. Mann;  Maximiliano Moyano;  James McCormac;  Farzana Meru;  Christoph Mordasini;  Ares Osborn;  Don Pollacco;  Didier Queloz;  Liam Raynard;  George R. Ricker;  Pamela Rowden;  Alexandre Santerne;  Joshua E. Schlieder;  Sara Seager;  Lizhou Sha;  Thiam-Guan Tan;  Rosanna H. Tilbrook;  Eric Ting;  Sté;  phane Udry;  Roland Vanderspek;  Christopher A. Watson;  Richard G. West;  Paul A. Wilson;  Joshua N. Winn;  Peter Wheatley;  Jesus Noel Villasenor;  Jose I. Vines;  Zhuchang Zhan
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/06

The interiors of giant planets remain poorly understood. Even for the planets in the Solar System, difficulties in observation lead to large uncertainties in the properties of planetary cores. Exoplanets that have undergone rare evolutionary processes provide a route to understanding planetary interiors. Planets found in and near the typically barren hot-Neptune '  desert'  (1,2)(a region in mass-radius space that contains few planets) have proved to be particularly valuable in this regard. These planets include HD149026b(3), which is thought to have an unusually massive core, and recent discoveries such as LTT9779b(4)and NGTS-4b(5), on which photoevaporation has removed a substantial part of their outer atmospheres. Here we report observations of the planet TOI-849b, which has a radius smaller than Neptune'  s but an anomalously large mass of39.1-2.6+2.7Earth masses and a density of5.2-0.8+0.7grams per cubic centimetre, similar to Earth'  s. Interior-structure models suggest that any gaseous envelope of pure hydrogen and helium consists of no more than3.9-0.9+0.8 per cent of the total planetary mass. The planet could have been a gas giant before undergoing extreme mass loss via thermal self-disruption or giant planet collisions, or it could have avoided substantial gas accretion, perhaps through gap opening or late formation(6). Although photoevaporation rates cannot account for the mass loss required to reduce a Jupiter-like gas giant, they can remove a small (a few Earth masses) hydrogen and helium envelope on timescales of several billion years, implying that any remaining atmosphere on TOI-849b is likely to be enriched by water or other volatiles from the planetary interior. We conclude that TOI-849b is the remnant core of a giant planet.


Observations of TOI-849b reveal a radius smaller than Neptune'  s but a large mass of about 40 Earth masses, indicating that the planet is the remnant core of a gas giant.


  
Ruthenium isotope vestige of Earth's pre-late-veneer mantle preserved in Archaean rocks 期刊论文
NATURE, 2020, 579 (7798) : 240-+
作者:  Abadie, Valerie;  Kim, Sangman M.;  Lejeune, Thomas;  Palanski, Brad A.;  Ernest, Jordan D.;  Tastet, Olivier;  Voisine, Jordan;  Discepolo, Valentina;  Marietta, Eric, V;  Hawash, Mohamed B. F.;  Ciszewski, Cezary;  Bouziat, Romain;  Panigrahi, Kaushik;  Horwath, Irina;  Zurenski, Matthew A.;  Lawrence, Ian;  Dumaine, Anne;  Yotova, Vania;  Grenier, Jean-Christophe;  Murray, Joseph A.;  Khosla, Chaitan;  Barreiro, Luis B.;  Jabri, Bana
收藏  |  浏览/下载:31/0  |  提交时间:2020/05/13

The accretion of volatile-rich material from the outer Solar System represents a crucial prerequisite for Earth to develop oceans and become a habitable planet(1-4). However, the timing of this accretion remains controversial(5-8). It has been proposed that volatile elements were added to Earth by the late accretion of a late veneer consisting of carbonaceous-chondrite-like material after core formation had ceased(6,9,10). This view could not be reconciled with the ruthenium (Ru) isotope composition of carbonaceous chondrites(5,11), which is distinct from that of the modern mantle(12), or of any known meteorite group(5). As a possible solution, Earth'  s pre-late-veneer mantle could already have contained a fraction of Ru that was not fully extracted by core formation(13). The presence of such pre-late-veneer Ru can only be established if its isotope composition is distinct from that of the modern mantle. Here we report the first high-precision, mass-independent Ru isotope compositions for Eoarchaean ultramafic rocks from southwest Greenland, which display a relative Ru-100 excess of 22 parts per million compared with the modern mantle value. This Ru-100 excess indicates that the source of the Eoarchaean rocks already contained a substantial fraction of Ru before the accretion of the late veneer. By 3.7 billion years ago, the mantle beneath southwest Greenland had not yet fully equilibrated with late accreted material. Otherwise, no Ru isotopic difference relative to the modern mantle would be observed. If constraints from other highly siderophile elements besides Ru are also considered(14), the composition of the modern mantle can only be reconciled if the late veneer contained substantial amounts of carbonaceous-chondrite-like materials with their characteristic Ru-100 deficits. These data therefore relax previous constraints on the late veneer and are consistent with volatile-rich material from the outer Solar System being delivered to Earth during late accretion.


  
Phase separation directs ubiquitination of gene-body nucleosomes 期刊论文
NATURE, 2020, 579 (7800) : 592-+
作者:  Zhang, Wenjuan;  Tarutani, Airi;  Newell, Kathy L.;  Murzin, Alexey G.;  Matsubara, Tomoyasu;  Falcon, Benjamin;  Vidal, Ruben;  Garringer, Holly J.;  Shi, Yang;  Ikeuchi, Takeshi;  Murayama, Shigeo;  Ghetti, Bernardino;  Hasegawa, Masato;  Goedert, Michel;  Scheres, Sjors H. W.
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

The yeast E3 ligase Bre1 forms a core-shell condensate with the scaffold protein Lge1, implicating liquid-liquid phase separation as a mechanism in the ubiquitination of histone H2B along gene bodies.


The conserved yeast E3 ubiquitin ligase Bre1 and its partner, the E2 ubiquitin-conjugating enzyme Rad6, monoubiquitinate histone H2B across gene bodies during the transcription cycle(1). Although processive ubiquitination might-in principle-arise from Bre1 and Rad6 travelling with RNA polymerase II2, the mechanism of H2B ubiquitination across genic nucleosomes remains unclear. Here we implicate liquid-liquid phase separation(3) as the underlying mechanism. Biochemical reconstitution shows that Bre1 binds the scaffold protein Lge1, which possesses an intrinsically disordered region that phase-separates via multivalent interactions. The resulting condensates comprise a core of Lge1 encapsulated by an outer catalytic shell of Bre1. This layered liquid recruits Rad6 and the nucleosomal substrate, which accelerates the ubiquitination of H2B. In vivo, the condensate-forming region of Lge1 is required to ubiquitinate H2B in gene bodies beyond the +1 nucleosome. Our data suggest that layered condensates of histone-modifying enzymes generate chromatin-associated '  reaction chambers'  , with augmented catalytic activity along gene bodies. Equivalent processes may occur in human cells, and cause neurological disease when impaired.


  
Fe2S: The Most Fe-Rich Iron Sulfide at the Earth's Inner Core Pressures 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (21) : 11944-11949
作者:  Tateno, Shigehiko;  Ozawa, Haruka;  Hirose, Kei;  Suzuki, Toshihiro;  I-Kawaguchi, Saori;  Hirao, Naohisa
收藏  |  浏览/下载:207/0  |  提交时间:2020/02/17
Fe2S  inner core  outer core  DAC  high pressure  
Nitrogen Content in the Earth's Outer Core 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (1) : 89-98
作者:  Bajgain, Suraj K.;  Mookherjee, Mainak;  Dasgupta, Rajdeep;  Ghosh, Dipta B.;  Karki, Bijaya B.
收藏  |  浏览/下载:2/0  |  提交时间:2019/04/09
Earth'  s outer core  light elements  density of molten Fe-N alloy  compressional velocity of molten Fe-N alloy