GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
Dietary modifications for enhanced cancer therapy 期刊论文
NATURE, 2020, 579 (7800) : 507-517
作者:  Keller, Matthew D.;  Ching, Krystal L.;  Liang, Feng-Xia;  Dhabaria, Avantika;  Tam, Kayan;  Ueberheide, Beatrix M.;  Unutmaz, Derya;  Torres, Victor J.;  Cadwell, Ken
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

Tumours depend on nutrients supplied by the host for their growth and survival. Modifications to the host'  s diet can change nutrient availability in the tumour microenvironment, which might represent a promising strategy for inhibiting tumour growth. Dietary modifications can limit tumour-specific nutritional requirements, alter certain nutrients that target the metabolic vulnerabilities of the tumour, or enhance the cytotoxicity of anti-cancer drugs. Recent reports have suggested that modification of several nutrients in the diet can alter the efficacy of cancer therapies, and some of the newest developments in this quickly expanding field are reviewed here. The results discussed indicate that the dietary habits and nutritional state of a patient must be taken into account during cancer research and therapy.


  
Bacterial coexistence driven by motility and spatial competition 期刊论文
NATURE, 2020, 578 (7796) : 588-+
作者:  Micke, P.;  Leopold, T.;  King, S. A.;  Benkler, E.;  Spiess, L. J.;  Schmoeger, L.;  Schwarz, M.;  Crespo Lopez-Urrutia, J. R.;  Schmidt, P. O.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Elucidating elementary mechanisms that underlie bacterial diversity is central to ecology(1,2) and microbiome research(3). Bacteria are known to coexist by metabolic specialization(4), cooperation(5) and cyclic warfare(6-8). Many species are also motile(9), which is studied in terms of mechanism(10,11), benefit(12,13), strategy(14,15), evolution(16,17) and ecology(18,19). Indeed, bacteria often compete for nutrient patches that become available periodically or by random disturbances(2,20,21). However, the role of bacterial motility in coexistence remains unexplored experimentally. Here we show that-for mixed bacterial populations that colonize nutrient patches-either population outcompetes the other when low in relative abundance. This inversion of the competitive hierarchy is caused by active segregation and spatial exclusion within the patch: a small fast-moving population can outcompete a large fast-growing population by impeding its migration into the patch, while a small fast-growing population can outcompete a large fast-moving population by expelling it from the initial contact area. The resulting spatial segregation is lost for weak growth-migration trade-offs and a lack of virgin space, but is robust to population ratio, density and chemotactic ability, and is observed in both laboratory and wild strains. These findings show that motility differences and their trade-offs with growth are sufficient to promote diversity, and suggest previously undescribed roles for motility in niche formation and collective expulsion-containment strategies beyond individual search and survival.


In mixed bacterial populations that colonize nutrient patches, a growth-migration trade-off can lead to spatial exclusion that provides an advantage to populations that become rare, thereby stabilizing the community.


  
Phosphatase activity and nitrogen fixation reflect species differences, not nutrient trading or nutrient balance, across tropical rainforest trees 期刊论文
ECOLOGY LETTERS, 2018, 21 (10) : 1486-1495
作者:  Batterman, Sarah A.;  Hall, Jefferson S.;  Turner, Benjamin L.;  Hedin, Lars O.;  Walter, J. Kimiko LaHaela;  Sheldon, Pete;  van Breugel, Michiel
收藏  |  浏览/下载:5/0  |  提交时间:2019/04/09
Biodiversity  biogeochemical niche  biogeochemistry  nitrogen  nutrient acquisition  nutrient limitation  nutrient strategy  phosphorus  tropical carbon sink