GSTDTAP

浏览/检索结果: 共107条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
A process-based metacommunity framework linking local and regional scale community ecology 期刊论文
ECOLOGY LETTERS, 2020
作者:  Thompson, Patrick L.;  Guzman, Laura Melissa;  De Meester, Luc;  Horvath, Zsofia;  Ptacnik, Robert;  Vanschoenwinkel, Bram;  Viana, Duarte S.;  Chase, Jonathan M.
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/21
Abiotic niche  coexistence  competition  dispersal  diversity  environmental change  functioning  stability  temporal  
Fire mosaics and habitat choice in nomadic foragers 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (23) : 12904-12914
作者:  Bird, Rebecca Bliege;  McGuire, Chloe;  Bird, Douglas W.;  Price, Michael H.;  Zeanah, David;  Nimmo, Dale G.
收藏  |  浏览/下载:12/0  |  提交时间:2020/06/01
ideal free distribution  positive density dependence  niche construction  historical ecology  hunter-gatherer mobility  
RGF1 controls root meristem size through ROS signalling 期刊论文
NATURE, 2020, 577 (7788) : 85-+
作者:  Yamada, Masashi;  Han, Xinwei;  Benfey, Philip N.
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

The stem cell niche and the size of the root meristem in plants are maintained by intercellular interactions and signalling networks involving a peptide hormone, root meristem growth factor 1 (RGF1)(1). Understanding how RGF1 regulates the development of the root meristem is essential for understanding stem cell function. Although five receptors for RGF1 have been identified(2-4), the downstream signalling mechanism remains unknown. Here we report a series of signalling events that follow RGF1 activity. We find that the RGF1-receptor pathway controls the distribution of reactive oxygen species (ROS) along the developmental zones of the Arabidopsis root. We identify a previously uncharacterized transcription factor, RGF1-INDUCIBLE TRANSCRIPTION FACTOR 1 (RITF1), that has a central role in mediating RGF1 signalling. Manipulating RITF1 expression leads to the redistribution of ROS along the root developmental zones. Changes in ROS distribution in turn enhance the stability of the PLETHORA2 protein, a master regulator of root stem cells. Our results thus clearly depict a signalling cascade that is initiated by RGF1, linking this peptide to mechanisms that regulate ROS.


  
Intuitive and broadly applicable definitions of niche and fitness differences 期刊论文
ECOLOGY LETTERS, 2020, 23 (7) : 1117-1128
作者:  Spaak, Jurg W.;  De Laender, Frederik
收藏  |  浏览/下载:6/0  |  提交时间:2020/05/13
Coexistence  competition  fitness differences  multispecies  mutualism  niche differences  
The projected timing of abrupt ecological disruption from climate change 期刊论文
NATURE, 2020, 580 (7804) : 496-+
作者:  Gorgulla, Christoph;  Boeszoermenyi, Andras;  Wang, Zi-Fu;  Fischer, Patrick D.;  Coote, Paul W.;  Padmanabha Das, Krishna M.;  Malets, Yehor S.;  Radchenko, Dmytro S.;  Moroz, Yurii S.;  Scott, David A.;  Fackeldey, Konstantin;  Hoffmann, Moritz;  Iavniuk, Iryna;  Wagner, Gerhard;  Arthanari, Haribabu
收藏  |  浏览/下载:55/0  |  提交时间:2020/05/13

As anthropogenic climate change continues the risks to biodiversity will increase over time, with future projections indicating that a potentially catastrophic loss of global biodiversity is on the horizon(1-3). However, our understanding of when and how abruptly this climate-driven disruption of biodiversity will occur is limited because biodiversity forecasts typically focus on individual snapshots of the future. Here we use annual projections (from 1850 to 2100) of temperature and precipitation across the ranges of more than 30,000 marine and terrestrial species to estimate the timing of their exposure to potentially dangerous climate conditions. We project that future disruption of ecological assemblages as a result of climate change will be abrupt, because within any given ecological assemblage the exposure of most species to climate conditions beyond their realized niche limits occurs almost simultaneously. Under a high-emissions scenario (representative concentration pathway (RCP) 8.5), such abrupt exposure events begin before 2030 in tropical oceans and spread to tropical forests and higher latitudes by 2050. If global warming is kept below 2 degrees C, less than 2% of assemblages globally are projected to undergo abrupt exposure events of more than 20% of their constituent species  however, the risk accelerates with the magnitude of warming, threatening 15% of assemblages at 4 degrees C, with similar levels of risk in protected and unprotected areas. These results highlight the impending risk of sudden and severe biodiversity losses from climate change and provide a framework for predicting both when and where these events may occur.


Using annual projections of temperature and precipitation to estimate when species will be exposed to potentially harmful climate conditions reveals that disruption of ecological assemblages as a result of climate change will be abrupt and could start as early as the current decade.


  
Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche 期刊论文
NATURE, 2020, 580 (7804) : 524-+
作者:  Poore, Gregory D.;  Kopylova, Evguenia;  Zhu, Qiyun;  Carpenter, Carolina;  Fraraccio, Serena;  Wandro, Stephen;  Kosciolek, Tomasz;  Janssen, Stefan;  Metcalf, Jessica;  Song, Se Jin;  Kanbar, Jad;  Miller-Montgomery, Sandrine;  Heaton, Robert;  Mckay, Rana;  Patel, Sandip Pravin;  Swafford, Austin D.;  Knight, Rob
收藏  |  浏览/下载:40/0  |  提交时间:2020/07/03

The initiation of an intestinal tumour is a probabilistic process that depends on the competition between mutant and normal epithelial stem cells in crypts(1). Intestinal stem cells are closely associated with a diverse but poorly characterized network of mesenchymal cell types(2,3). However, whether the physiological mesenchymal microenvironment of mutant stem cells affects tumour initiation remains unknown. Here we provide in vivo evidence that the mesenchymal niche controls tumour initiation in trans. By characterizing the heterogeneity of the intestinal mesenchyme using single-cell RNA-sequencing analysis, we identified a population of rare pericryptal Ptgs2-expressing fibroblasts that constitutively process arachidonic acid into highly labile prostaglandin E-2 (PGE(2)). Specific ablation of Ptgs2 in fibroblasts was sufficient to prevent tumour initiation in two different models of sporadic, autochthonous tumorigenesis. Mechanistically, single-cell RNA-sequencing analyses of a mesenchymal niche model showed that fibroblast-derived PGE(2) drives the expansion omicron f a population of Sca-1(+) reserve-like stem cells. These express a strong regenerative/tumorigenic program, driven by the Hippo pathway effector Yap. In vivo, Yap is indispensable for Sca-1(+) cell expansion and early tumour initiation and displays a nuclear localization in both mouse and human adenomas. Using organoid experiments, we identified a molecular mechanism whereby PGE(2) promotes Yap dephosphorylation, nuclear translocation and transcriptional activity by signalling through the receptor Ptger4. Epithelial-specific ablation of Ptger4 misdirected the regenerative reprogramming of stem cells and prevented Sca-1(+) cell expansion and sporadic tumour initiation in mutant mice, thereby demonstrating the robust paracrine control of tumour-initiating stem cells by PGE(2)-Ptger4. Analyses of patient-derived organoids established that PGE(2)-PTGER4 also regulates stem-cell function in humans. Our study demonstrates that initiation of colorectal cancer is orchestrated by the mesenchymal niche and reveals a mechanism by which rare pericryptal Ptgs2-expressing fibroblasts exert paracrine control over tumour-initiating stem cells via the druggable PGE(2)-Ptger4-Yap signalling axis.


Single-cell RNA-sequencing analysis of intestinal mesenchyme identified a population of fibroblasts that produce prostaglandin E-2, which, when disrupted, prevented initiation of intestinal tumours.


  
Global conservation of species' niches 期刊论文
NATURE, 2020, 580 (7802) : 232-+
作者:  Guo, Xiaoyan;  Aviles, Giovanni;  Liu, Yi;  Tian, Ruilin;  Unger, Bret A.;  Lin, Yu-Hsiu T.;  Wiita, Arun P.;  Xu, Ke;  Correia, M. Almira;  Kampmann, Martin
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/03

Environmental change is rapidly accelerating, and many species will need to adapt to survive(1). Ensuring that protected areas cover populations across a broad range of environmental conditions could safeguard the processes that lead to such adaptations(1-3). However, international conservation policies have largely neglected these considerations when setting targets for the expansion of protected areas(4). Here we show that-of 19,937 vertebrate species globally(5-8)-the representation of environmental conditions across their habitats in protected areas (hereafter, niche representation) is inadequate for 4,836 (93.1%) amphibian, 8,653 (89.5%) bird and 4,608 (90.9%) terrestrial mammal species. Expanding existing protected areas to cover these gaps would encompass 33.8% of the total land surface-exceeding the current target of 17% that has been adopted by governments. Priority locations for expanding the system of protected areas to improve niche representation occur in global biodiversity hotspots(9), including Colombia, Papua New Guinea, South Africa and southwest China, as well as across most of the major land masses of the Earth. Conversely, we also show that planning for the expansion of protected areas without explicitly considering environmental conditions would marginally reduce the land area required to 30.7%, but that this would lead to inadequate niche representation for 7,798 (39.1%) species. As the governments of the world prepare to renegotiate global conservation targets, policymakers have the opportunity to help to maintain the adaptive potential of species by considering niche representation within protected areas(1,2).


Protected areas would need to expand to 33.8% of the total land surface to adequately represent environmental conditions across the habitats of amphibians, birds and terrestrial mammals, far exceeding the current 17% target.


  
Resource diversity promotes among-individual diet variation, but not genomic diversity, in lake stickleback 期刊论文
ECOLOGY LETTERS, 2020, 23 (3) : 495-505
作者:  Bolnick, Daniel I.;  Ballare, Kimberly M.
收藏  |  浏览/下载:4/0  |  提交时间:2020/07/02
adaptive radiation  diversification  effective population size  Gasterosteus aculeatus  individual specialisation  intraspecific variation  niche variation  
Relationships between population densities and niche-centroid distances in North American birds 期刊论文
ECOLOGY LETTERS, 2020, 23 (3) : 555-564
作者:  Osorio-Olvera, Luis;  Nez-Arenas, Carlos Ya;  Martinez-Meyer, Enrique;  Peterson, A. Townsend
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
Abundance  ecological niche centroid  estimation  geographic distribution  
Recent responses to climate change reveal the drivers of species extinction and survival 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (8) : 4211-4217
作者:  Roman-Palacios, Cristian;  Wiens, John J.
收藏  |  浏览/下载:4/0  |  提交时间:2020/05/13
climate change  disperal  extinction  niche shift