GSTDTAP

浏览/检索结果: 共24条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
美国将全面扩大海上能源产能 快报文章
地球科学快报,2025年第7期
作者:  王立伟
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:450/0  |  提交时间:2025/04/10
Department of the Interior  offshore energy  
最新研究首次揭示火星内部结构及其性质 快报文章
地球科学快报,2025年第6期
作者:  张树良
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:427/0  |  提交时间:2025/03/25
Mars  northern ice cap  interior structure  glacial isostatic adjustment  geophysical models  
新的“变形成像”技术可揭示地球内部结构 快报文章
地球科学快报,2024年第14期
作者:  王晓晨
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:591/0  |  提交时间:2024/07/25
deformation imaging technique  Earth Interior  
美国内政部制定了海上可再生能源开发的最新规则 快报文章
资源环境快报,2024年第9期
作者:  魏艳红
Microsoft Word(21Kb)  |  收藏  |  浏览/下载:604/3  |  提交时间:2024/05/15
Interior Department  Offshore Renewable Energy  Sustainable Offshore Wind Industry  
美国宣布 Landsat 2030 国际合作计划 快报文章
地球科学快报,2024年第1期
作者:  王立伟
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:44/0  |  提交时间:2024/01/10
U.S. Department of the Interior  Landsat 2030 International Partnership Initiative  
美国宣布 Landsat 2030 国际合作计划 快报文章
地球科学快报,2024年第1期
作者:  王立伟
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:43/0  |  提交时间:2024/01/10
U.S. Department of the Interior  Landsat 2030 International Partnership Initiative  
美国宣布 Landsat 2030 国际合作计划 快报文章
地球科学快报,2024年第1期
作者:  王立伟
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:524/0  |  提交时间:2024/01/10
U.S. Department of the Interior  Landsat 2030 International Partnership Initiative  
美国内政部为海水淡化基础设施投资 1260 万美元 快报文章
资源环境快报,2023年第09期
作者:  吴秀平
Microsoft Word(21Kb)  |  收藏  |  浏览/下载:631/0  |  提交时间:2023/05/17
Department of the Interior  desalination  
美国内政部发布《入侵物种战略计划》草案 快报文章
资源环境快报,2020年第16期
作者:  裴惠娟
Microsoft Word(46Kb)  |  收藏  |  浏览/下载:397/0  |  提交时间:2020/08/29
Department of the Interior  Invasive Species  Strategic Plan  Draft  
A remnant planetary core in the hot-Neptune desert 期刊论文
NATURE, 2020, 583 (7814) : 39-+
作者:  David J. Armstrong;  Thé;  o A. Lopez;  Vardan Adibekyan;  Richard A. Booth;  Edward M. Bryant;  Karen A. Collins;  Magali Deleuil;  Alexandre Emsenhuber;  Chelsea X. Huang;  George W. King;  Jorge Lillo-Box;  Jack J. Lissauer;  Elisabeth Matthews;  Olivier Mousis;  Louise D. Nielsen;  Hugh Osborn;  Jon Otegi;  Nuno C. Santos;  ;  rgio G. Sousa;  Keivan G. Stassun;  Dimitri Veras;  Carl Ziegler;  Jack S. Acton;  Jose M. Almenara;  David R. Anderson;  David Barrado;  Susana C. C. Barros;  Daniel Bayliss;  Claudia Belardi;  Francois Bouchy;  ;  sar Briceñ;  o;  Matteo Brogi;  David J. A. Brown;  Matthew R. Burleigh;  Sarah L. Casewell;  Alexander Chaushev;  David R. Ciardi;  Kevin I. Collins;  Knicole D. Coló;  n;  Benjamin F. Cooke;  Ian J. M. Crossfield;  Rodrigo F. Dí;  az;  Elisa Delgado Mena;  Olivier D. S. Demangeon;  Caroline Dorn;  Xavier Dumusque;  Philipp Eigmü;  ller;  Michael Fausnaugh;  Pedro Figueira;  Tianjun Gan;  Siddharth Gandhi;  Samuel Gill;  Erica J. Gonzales;  Michael R. Goad;  Maximilian N. Gü;  nther;  Ravit Helled;  Saeed Hojjatpanah;  Steve B. Howell;  James Jackman;  James S. Jenkins;  Jon M. Jenkins;  Eric L. N. Jensen;  Grant M. Kennedy;  David W. Latham;  Nicholas Law;  Monika Lendl;  Michael Lozovsky;  Andrew W. Mann;  Maximiliano Moyano;  James McCormac;  Farzana Meru;  Christoph Mordasini;  Ares Osborn;  Don Pollacco;  Didier Queloz;  Liam Raynard;  George R. Ricker;  Pamela Rowden;  Alexandre Santerne;  Joshua E. Schlieder;  Sara Seager;  Lizhou Sha;  Thiam-Guan Tan;  Rosanna H. Tilbrook;  Eric Ting;  Sté;  phane Udry;  Roland Vanderspek;  Christopher A. Watson;  Richard G. West;  Paul A. Wilson;  Joshua N. Winn;  Peter Wheatley;  Jesus Noel Villasenor;  Jose I. Vines;  Zhuchang Zhan
收藏  |  浏览/下载:92/0  |  提交时间:2020/07/06

The interiors of giant planets remain poorly understood. Even for the planets in the Solar System, difficulties in observation lead to large uncertainties in the properties of planetary cores. Exoplanets that have undergone rare evolutionary processes provide a route to understanding planetary interiors. Planets found in and near the typically barren hot-Neptune '  desert'  (1,2)(a region in mass-radius space that contains few planets) have proved to be particularly valuable in this regard. These planets include HD149026b(3), which is thought to have an unusually massive core, and recent discoveries such as LTT9779b(4)and NGTS-4b(5), on which photoevaporation has removed a substantial part of their outer atmospheres. Here we report observations of the planet TOI-849b, which has a radius smaller than Neptune'  s but an anomalously large mass of39.1-2.6+2.7Earth masses and a density of5.2-0.8+0.7grams per cubic centimetre, similar to Earth'  s. Interior-structure models suggest that any gaseous envelope of pure hydrogen and helium consists of no more than3.9-0.9+0.8 per cent of the total planetary mass. The planet could have been a gas giant before undergoing extreme mass loss via thermal self-disruption or giant planet collisions, or it could have avoided substantial gas accretion, perhaps through gap opening or late formation(6). Although photoevaporation rates cannot account for the mass loss required to reduce a Jupiter-like gas giant, they can remove a small (a few Earth masses) hydrogen and helium envelope on timescales of several billion years, implying that any remaining atmosphere on TOI-849b is likely to be enriched by water or other volatiles from the planetary interior. We conclude that TOI-849b is the remnant core of a giant planet.


Observations of TOI-849b reveal a radius smaller than Neptune'  s but a large mass of about 40 Earth masses, indicating that the planet is the remnant core of a gas giant.