GSTDTAP

浏览/检索结果: 共52条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Extreme dry and wet spells face changes in their duration and timing 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (7)
作者:  Breinl, Korbinian;  Di Baldassarre, Giuliano;  Mazzoleni, Maurizio;  Lun, David;  Vico, Giulia
收藏  |  浏览/下载:11/0  |  提交时间:2020/08/18
extreme dry spells  extreme wet spells  change in duration  change in timing  climate change  global analysis  global trends  
Dynamic spatial-temporal precipitation distribution models for short-duration rainstorms in Shenzhen, China based on machine learning 期刊论文
ATMOSPHERIC RESEARCH, 2020, 237
作者:  Liu, Yuan-Yuan;  Li, Lei;  Liu, Ye-Sen;  Chan, Pak Wai;  Zhang, Wen-Hai
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/02
Short-duration rainstorm  Machine learning  Locally linear embedding method  Dynamic spatial-temporal distribution  Shenzhen  
Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018 期刊论文
NATURE, 2020, 581 (7808) : 294-+
作者:  Ibrahim, Nizar;  Maganuco, Simone;  Dal Sasso, Cristiano;  Fabbri, Matteo;  Auditore, Marco;  Bindellini, Gabriele;  Martill, David M.;  Zouhri, Samir;  Mattarelli, Diego A.;  Unwin, David M.;  Wiemann, Jasmina;  Bonadonna, Davide;  Amane, Ayoub;  Jakubczak, Juliana;  Joger, Ulrich;  Lauder, George V.;  Pierce, Stephanie E.
收藏  |  浏览/下载:18/0  |  提交时间:2020/05/25

Warming surface temperatures have driven a substantial reduction in the extent and duration of Northern Hemisphere snow cover(1-3). These changes in snow cover affect Earth'  s climate system via the surface energy budget, and influence freshwater resources across a large proportion of the Northern Hemisphere(4-6). In contrast to snow extent, reliable quantitative knowledge on seasonal snow mass and its trend is lacking(7-9). Here we use the new GlobSnow 3.0 dataset to show that the 1980-2018 annual maximum snow mass in the Northern Hemisphere was, on average, 3,062 +/- 35 billion tonnes (gigatonnes). Our quantification is for March (the month that most closely corresponds to peak snow mass), covers non-alpine regions above 40 degrees N and, crucially, includes a bias correction based on in-field snow observations. We compare our GlobSnow 3.0 estimates with three independent estimates of snow mass, each with and without the bias correction. Across the four datasets, the bias correction decreased the range from 2,433-3,380 gigatonnes (mean 2,867) to 2,846-3,062 gigatonnes (mean 2,938)-a reduction in uncertainty from 33% to 7.4%. On the basis of our bias-corrected GlobSnow 3.0 estimates, we find different continental trends over the 39-year satellite record. For example, snow mass decreased by 46 gigatonnes per decade across North America but had a negligible trend across Eurasia  both continents exhibit high regional variability. Our results enable a better estimation of the role of seasonal snow mass in Earth'  s energy, water and carbon budgets.


Applying a bias correction to a state-of-the-art dataset covering non-alpine regions of the Northern Hemisphere and to three other datasets yields a more constrained quantification of snow mass in March from 1980 to 2018.


  
Geography and Morphology Affect the Ice Duration Dynamics of Northern Hemisphere Lakes Worldwide 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (12)
作者:  Warne, Connor P. K.;  McCann, Kevin S.;  Rooney, Neil;  Cazelles, Kevin;  Guzzo, Matthew M.
收藏  |  浏览/下载:16/0  |  提交时间:2020/05/25
ice phenology  ice duration  limnology  time series  climate change  
Future Changes of Summer Monsoon Characteristics and Evaporative Demand Over Asia in CMIP6 Simulations 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (8)
作者:  Ha, Kyung-Ja;  Moon, Suyeon;  Timmermann, Axel;  Kim, Daeha
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/02
CMIP6  monsoon season  monsoon duration  extremes  Asian regional monsoons  
Local and global consequences of reward-evoked striatal dopamine release 期刊论文
NATURE, 2020, 580 (7802) : 239-+
作者:  Wagner, Felix R.;  Dienemann, Christian;  Wang, Haibo;  Stuetzer, Alexandra;  Tegunov, Dimitry;  Urlaub, Henning;  Cramer, Patrick
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

The neurotransmitter dopamine is required for the reinforcement of actions by rewarding stimuli(1). Neuroscientists have tried to define the functions of dopamine in concise conceptual terms(2), but the practical implications of dopamine release depend on its diverse brain-wide consequences. Although molecular and cellular effects of dopaminergic signalling have been extensively studied(3), the effects of dopamine on larger-scale neural activity profiles are less well-understood. Here we combine dynamic dopamine-sensitive molecular imaging(4) and functional magnetic resonance imaging to determine how striatal dopamine release shapes local and global responses to rewarding stimulation in rat brains. We find that dopamine consistently alters the duration, but not the magnitude, of stimulus responses across much of the striatum, via quantifiable postsynaptic effects that vary across subregions. Striatal dopamine release also potentiates a network of distal responses, which we delineate using neurochemically dependent functional connectivity analyses. Hot spots of dopaminergic drive notably include cortical regions that are associated with both limbic and motor function. Our results reveal distinct neuromodulatory actions of striatal dopamine that extend well beyond its sites of peak release, and that result in enhanced activation of remote neural populations necessary for the performance of motivated actions. Our findings also suggest brain-wide biomarkers of dopaminergic function and could provide a basis for the improved interpretation of neuroimaging results that are relevant to learning and addiction.


Molecular and functional magnetic resonance imaging in the rat reveals distinct neuromodulatory effects of striatal dopamine that extend beyond peak release sites and activate remote neural populations necessary for performing motivated actions.


  
Loopy Levy flights enhance tracer diffusion in active suspensions 期刊论文
NATURE, 2020, 579 (7799) : 364-+
作者:  Hu, Bo;  Jin, Chengcheng;  Zeng, Xing;  Resch, Jon M.;  Jedrychowski, Mark P.;  Yang, Zongfang;  Desai, Bhavna N.;  Banks, Alexander S.;  Lowell, Bradford B.;  Mathis, Diane;  Spiegelman, Bruce M.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

A theoretical framework describing the hydrodynamic interactions between a passive particle and an active medium in out-of-equilibrium systems predicts long-range Levy flights for the diffusing particle driven by the density of the active component.


Brownian motion is widely used as a model of diffusion in equilibrium media throughout the physical, chemical and biological sciences. However, many real-world systems are intrinsically out of equilibrium owing to energy-dissipating active processes underlying their mechanical and dynamical features(1). The diffusion process followed by a passive tracer in prototypical active media, such as suspensions of active colloids or swimming microorganisms(2), differs considerably from Brownian motion, as revealed by a greatly enhanced diffusion coefficient(3-10) and non-Gaussian statistics of the tracer displacements(6,9,10). Although these characteristic features have been extensively observed experimentally, there is so far no comprehensive theory explaining how they emerge from the microscopic dynamics of the system. Here we develop a theoretical framework to model the hydrodynamic interactions between the tracer and the active swimmers, which shows that the tracer follows a non-Markovian coloured Poisson process that accounts for all empirical observations. The theory predicts a long-lived Levy flight regime(11) of the loopy tracer motion with a non-monotonic crossover between two different power-law exponents. The duration of this regime can be tuned by the swimmer density, suggesting that the optimal foraging strategy of swimming microorganisms might depend crucially on their density in order to exploit the Levy flights of nutrients(12). Our framework can be applied to address important theoretical questions, such as the thermodynamics of active systems(13), and practical ones, such as the interaction of swimming microorganisms with nutrients and other small particles(14) (for example, degraded plastic) and the design of artificial nanoscale machines(15).


  
Dynamic changes of the dryness/wetness characteristics in the largest river basin of South China and their possible climate driving factors 期刊论文
ATMOSPHERIC RESEARCH, 2020, 232
作者:  Wu, Jiefeng;  Tan, Xuezhi;  Chen, Xiaohong;  Lin, Kairong
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/02
Dryness/wetness  Drought duration and severity  Climate extremes  Teleconnection  ENSO  Pearl River basin  
The past and future of global river ice 期刊论文
NATURE, 2020, 577 (7788) : 69-+
作者:  Yang, Xiao;  Pavelsky, Tamlin M.;  Allen, George H.
收藏  |  浏览/下载:7/0  |  提交时间:2020/05/13

More than one-third of Earth'  s landmass is drained by rivers that seasonally freeze over. Ice transforms the hydrologic(1,2), ecologic(3,4), climatic(5) and socio-economic(6-8) functions of river corridors. Although river ice extent has been shown to be declining in many regions of the world(1), the seasonality, historical change and predicted future changes in river ice extent and duration have not yet been quantified globally. Previous studies of river ice, which suggested that declines in extent and duration could be attributed to warming temperatures(9,10), were based on data from sparse locations. Furthermore, existing projections of future ice extent are based solely on the location of the 0-degrees C isotherm11. Here, using satellite observations, we show that the global extent of river ice is declining, and we project a mean decrease in seasonal ice duration of 6.10 +/- 0.08 days per 1-degrees C increase in global mean surface air temperature. We tracked the extent of river ice using over 400,000 clear-sky Landsat images spanning 1984-2018 and observed a mean decline of 2.5 percentage points globally in the past three decades. To project future changes in river ice extent, we developed an observationally calibrated and validated model, based on temperature and season, which reduced the mean bias by 87 per cent compared with the 0-degree-Celsius isotherm approach. We applied this model to future climate projections for 2080-2100: compared with 2009-2029, the average river ice duration declines by 16.7 days under Representative Concentration Pathway (RCP) 8.5, whereas under RCP 4.5 it declines on average by 7.3 days. Our results show that, globally, river ice is measurably declining and will continue to decline linearly with projected increases in surface air temperature towards the end of this century.


  
Dryness/wetness pattern over the Three-River Headwater Region: Variation characteristic, causes, and drought risks 期刊论文
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2019
作者:  Li, Sisi;  Yao, Zhijun;  Wang, Rui;  Liu, Zhaofei
收藏  |  浏览/下载:6/0  |  提交时间:2020/02/17
drought duration  ENSO  reference evapotranspiration  standardized precipitation evapotranspiration index  Three-River Headwater Region