GSTDTAP

浏览/检索结果: 共114条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
美研究揭示二氧化碳的温室气体效应将愈发增强 快报文章
气候变化快报,2023年第24期
作者:  秦冰雪
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:394/0  |  提交时间:2023/12/20
CO2  Climate Sensitivity  
德加科研人员提出更精确预测地球温度的新方法 快报文章
气候变化快报,2021年第1期
作者:  廖琴
Microsoft Word(19Kb)  |  收藏  |  浏览/下载:459/0  |  提交时间:2021/01/04
Climate Sensitivity Estimates  Global Temperature Projections  
平衡气候敏感度的温度状态依赖性不可忽视 快报文章
气候变化快报,2020年第18期
作者:  董利苹
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:362/0  |  提交时间:2020/09/20
Eocene  Equilibrium Climate Sensitivity  Proxy Evidence  
国际研究缩小了气候对CO2的敏感性范围 快报文章
气候变化快报,2020年第16期
作者:  裴惠娟
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:381/0  |  提交时间:2020/08/19
Climate Sensitivity  Assessment  
Impact of Higher Spatial Atmospheric Resolution on Precipitation Extremes Over Land in Global Climate Models 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (13)
作者:  Bador, Margot;  Boe, Julien;  Terray, Laurent;  Alexander, Lisa, V;  Baker, Alexander;  Bellucci, Alessio;  Haarsma, Rein;  Koenigk, Torben;  Moine, Marie-Pierre;  Lohmann, Katja;  Putrasahan, Dian A.;  Roberts, Chris;  Roberts, Malcolm;  Scoccimarro, Enrico;  Schiemann, Reinhard;  Seddon, Jon;  Senan, Retish;  Valcke, Sophie;  Vanniere, Benoit
收藏  |  浏览/下载:12/0  |  提交时间:2020/08/18
precipitation extremes  multimodel and multiproduct of observations framework  performance of the models  global climate models for CMIP6 and HighResMIP  sensitivity to atmospheric spatial resolution  
Short-term tests validate long-term estimates of climate change 期刊论文
NATURE, 2020, 582 (7811) : 185-186
作者:  Tollefson, Jeff
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

Climate sensitivity to atmospheric CO2 levels is likely to be high.


Six-hour weather forecasts have been used to validate estimates of climate change hundreds of years from now. Such tests have great potential - but only if our weather-forecasting and climate-prediction systems are unified.


  
The Role of Climate Sensitivity in Upper-Tail Sea Level Rise Projections 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (6)
作者:  Vega-Westhoff, B.;  Sriver, R. L.;  Hartin, C.;  Wong, T. E.;  Keller, K.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
sea level rise  climate sensitivity  probabilistic projections  
Observational constraints on the effective climate sensitivity from the historical period 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (3)
作者:  Tokarska, Katarzyna B.;  Hegerl, Gabriele C.;  Schurer, Andrew P.;  Forster, Piers M.;  Marvel, Kate
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/02
climate sensitivity  detection and attribution  historical period  greenhouse gases  
Quantifying the probability distribution function of the transient climate response to cumulative CO2 emissions 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (3)
作者:  Spafford, Lynsay;  MacDougall, Andrew H.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
transient climate response to cumulative CO2 emissions  carbon budgets  climate sensitivity  land-borne fraction of carbon  carbon-climate feedback  
Palaeoclimate evidence of vulnerable permafrost during times of low sea ice 期刊论文
NATURE, 2020, 577 (7789) : 221-+
作者:  Vaks, A.;  Mason, A. J.;  Breitenbach, S. F. M.;  Kononov, A. M.;  Osinzev, A. V.;  Rosensaft, M.;  Borshevsky, A.;  Gutareva, O. S.;  Henderson, G. M.
收藏  |  浏览/下载:10/0  |  提交时间:2020/05/13

Climate change in the Arctic is occurring rapidly, and projections suggest the complete loss of summer sea ice by the middle of this century(1). The sensitivity of permanently frozen ground (permafrost) in the Northern Hemisphere to warming is less clear, and its long-term trends are harder to monitor than those of sea ice. Here we use palaeoclimate data to show that Siberian permafrost is robust to warming when Arctic sea ice is present, but vulnerable when it is absent. Uranium-lead chronology of carbonate deposits (speleothems) in a Siberian cave located at the southern edge of continuous permafrost reveals periods in which the overlying ground was not permanently frozen. The speleothem record starts 1.5 million years ago (Ma), a time when greater equator-to-pole heat transport led to a warmer Northern Hemisphere(2). The growth of the speleothems indicates that permafrost at the cave site was absent at that time, becoming more frequent from about 1.35 Ma, as the Northern Hemisphere cooled, and permanent after about 0.4 Ma. This history mirrors that of year-round sea ice in the Arctic Ocean, which was largely absent before about 0.4 Ma (ref.(3)), but continuously present since that date. The robustness of permafrost when sea ice is present, as well as the increased permafrost vulnerability when sea ice is absent, can be explained by changes in both heat and moisture transport. Reduced sea ice may contribute to warming of Arctic air(4-6), which can lead to warming far inland(7). Open Arctic waters also increase the source of moisture and increase autumn snowfall over Siberia, insulating the ground from low winter temperatures(8-10). These processes explain the relationship between an ice-free Arctic and permafrost thawing before 0.4 Ma. If these processes continue during modern climate change, future loss of summer Arctic sea ice will accelerate the thawing of Siberian permafrost.