GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
Strain engineering and epitaxial stabilization of halide perovskites 期刊论文
NATURE, 2020, 577 (7789) : 209-+
作者:  Chen, Yimu;  Lei, Yusheng;  Li, Yuheng;  Yu, Yugang;  Cai, Jinze;  Chiu, Ming-Hui;  Rao, Rahul;  Gu, Yue;  Wang, Chunfeng;  Choi, Woojin;  Hu, Hongjie;  Wang, Chonghe;  Li, Yang;  Song, Jiawei;  Zhang, Jingxin;  Qi, Baiyan;  Lin, Muyang;  Zhang, Zhuorui;  Islam, Ahmad E.;  Maruyama, Benji;  Dayeh, Shadi;  Li, Lain-Jong;  Yang, Kesong;  Lo, Yu-Hwa;  Xu, Sheng
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/03

Strain engineering is a powerful tool with which to enhance semiconductor device performance(1,2). Halide perovskites have shown great promise in device applications owing to their remarkable electronic and optoelectronic properties(3-5). Although applying strain to halide perovskites has been frequently attempted, including using hydrostatic pressurization(6-8), electrostriction(9), annealing(10-12), van der Waals force(13), thermal expansion mismatch(14), and heat-induced substrate phase transition(15), the controllable and device-compatible strain engineering of halide perovskites by chemical epitaxy remains a challenge, owing to the absence of suitable lattice-mismatched epitaxial substrates. Here we report the strained epitaxial growth of halide perovskite single-crystal thin films on lattice-mismatched halide perovskite substrates. We investigated strain engineering of a-formamidinium lead iodide (alpha-FAPbI(3)) using both experimental techniques and theoretical calculations. By tailoring the substrate composition-and therefore its lattice parameter-a compressive strain as high as 2.4 per cent is applied to the epitaxial alpha-FAPbI(3) thin film. We demonstrate that this strain effectively changes the crystal structure, reduces the bandgap and increases the hole mobility of alpha-FAPbI(3). Strained epitaxy is also shown to have a substantial stabilization effect on the alpha-FAPbI(3) phase owing to the synergistic effects of epitaxial stabilization and strain neutralization. As an example, strain engineering is applied to enhance the performance of an alpha-FAPbI(3)-based photodetector.


  
Antagonistic cooperativity between crystal growth modifiers 期刊论文
NATURE, 2020, 577 (7791) : 497-+
作者:  Ma, Wenchuan;  Lutsko, James F.;  Rimer, Jeffrey D.;  Vekilov, Peter G.
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

Inhibitor pairs that suppress the crystallization of haematin, which is a part of malaria parasites'  physiology, show unexpected antagonism due to attenuation of step pinning by kink blockers.


Ubiquitous processes in nature and the industry exploit crystallization from multicomponent environments(1-5)  however, laboratory efforts have focused on the crystallization of pure solutes(6,7) and the effects of single growth modifiers(8,9). Here we examine the molecular mechanisms employed by pairs of inhibitors in blocking the crystallization of haematin, which is a model organic compound with relevance to the physiology of malaria parasites(10,11). We use a combination of scanning probe microscopy and molecular modelling to demonstrate that inhibitor pairs, whose constituents adopt distinct mechanisms of haematin growth inhibition, kink blocking and step pinning(12,13), exhibit both synergistic and antagonistic cooperativity depending on the inhibitor combination and applied concentrations. Synergism between two crystal growth modifiers is expected, but the antagonistic cooperativity of haematin inhibitors is not reflected in current crystal growth models. We demonstrate that kink blockers reduce the line tension of step edges, which facilitates both the nucleation of crystal layers and step propagation through the gates created by step pinners. The molecular viewpoint on cooperativity between crystallization modifiers provides guidance on the pairing of modifiers in the synthesis of crystalline materials. The proposed mechanisms indicate strategies to understand and control crystallization in both natural and engineered systems, which occurs in complex multicomponent media(1-3,8,9). In a broader context, our results highlight the complexity of crystal-modifier interactions mediated by the structure and dynamics of the crystal interface.


  
Synergistic effects of synoptic weather patterns and topography on air quality: a case of the Sichuan Basin of China 期刊论文
CLIMATE DYNAMICS, 2019, 53 (11) : 6729-6744
作者:  Ning, Guicai;  Yim, Steve Hung Lam;  Wang, Shigong;  Duan, Bolong;  Nie, Canqi;  Yang, Xu;  Wang, Jinyan;  Shang, Kezheng
收藏  |  浏览/下载:11/0  |  提交时间:2020/02/17
Synoptic weather patterns  Complex topography  Synergistic effects  Air pollution  Sichuan Basin  Foehn warming  
Synergistic effects of climate and land-use change influence broad-scale avian population declines 期刊论文
GLOBAL CHANGE BIOLOGY, 2019, 25 (5) : 1561-1575
作者:  Northrup, Joseph M.;  Rivers, James W.;  Yang, Zhiqiang;  Betts, Matthew G.
收藏  |  浏览/下载:6/0  |  提交时间:2019/11/26
Bayesian hierarchical model  Breeding Bird Survey  climate change  habitat loss  land-use change  synergistic effects