GSTDTAP

浏览/检索结果: 共7条,第1-7条 帮助

已选(0)清除 条数/页:   排序方式:
英国将投资3000万英镑用于捕集和储存可再生能源 快报文章
气候变化快报,2023年第09期
作者:  董利苹
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:347/0  |  提交时间:2023/05/05
£30 Million  Capture  Store  Renewable Energy  
Structure and catalytic mechanism of a human triacylglycerol-synthesis enzyme 期刊论文
NATURE, 2020, 581 (7808) : 323-+
作者:  Nikoo, Mohammad Samizadeh;  Jafari, Armin;  Perera, Nirmana;  Zhu, Minghua;  Santoruvo, Giovanni;  Matioli, Elison
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/03

Triacylglycerols store metabolic energy in organisms and have industrial uses as foods and fuels. Excessive accumulation of triacylglycerols in humans causes obesity and is associated with metabolic diseases(1). Triacylglycerol synthesis is catalysed by acyl-CoA diacylglycerol acyltransferase (DGAT) enzymes(2-4), the structures and catalytic mechanisms of which remain unknown. Here we determined the structure of dimeric human DGAT1, a member of the membrane-bound O-acyltransferase (MBOAT) family, by cryo-electron microscopy at approximately 3.0 angstrom resolution. DGAT1 forms a homodimer through N-terminal segments and a hydrophobic interface, with putative active sites within the membrane region. A structure obtained with oleoyl-CoA substrate resolved at approximately 3.2 angstrom shows that the CoA moiety binds DGAT1 on the cytosolic side and the acyl group lies deep within a hydrophobic channel, positioning the acyl-CoA thioester bond near an invariant catalytic histidine residue. The reaction centre is located inside a large cavity, which opens laterally to the membrane bilayer, providing lipid access to the active site. A lipid-like density-possibly representing an acyl-acceptor molecule-is located within the reaction centre, orthogonal to acyl-CoA. Insights provided by the DGAT1 structures, together with mutagenesis and functional studies, provide the basis for a model of the catalysis of triacylglycerol synthesis by DGAT.


Cryo-electron microscopy structures and functional and mutagenesis studies provide insights into the catalysis of triacylglycerol synthesis by human acyl-CoA diacylglycerol acyltransferase at its intramembrane active site.


  
A HOME FOR EVERY IMAGING DATA SET 期刊论文
NATURE, 2020, 579 (7797) : 162-163
作者:  Gilbert, Nick;  van Leeuwen, Fred
收藏  |  浏览/下载:0/0  |  提交时间:2020/07/03

Repositories let researchers store, share and access life-science images - and maybe even extract new findings.


  
Current-driven magnetic domain-wall logic 期刊论文
NATURE, 2020, 579 (7798) : 214-+
作者:  Culp, Elizabeth J.;  Waglechner, Nicholas;  Wang, Wenliang;  Fiebig-Comyn, Aline A.;  Hsu, Yen-Pang;  Koteva, Kalinka;  Sychantha, David;  Coombes, Brian K.;  Van Nieuwenhze, Michael S.;  Brun, Yves, V;  Wright, Gerard D.
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Spin-based logic architectures provide nonvolatile data retention, near-zero leakage, and scalability, extending the technology roadmap beyond complementary metal-oxide-semiconductor logic(1-13). Architectures based on magnetic domain walls take advantage of the fast motion, high density, non-volatility and flexible design of domain walls to process and store information(1,3,14-16). Such schemes, however, rely on domain-wall manipulation and clocking using an external magnetic field, which limits their implementation in dense, large-scale chips. Here we demonstrate a method for performing all-electric logic operations and cascading using domain-wall racetracks. We exploit the chiral coupling between neighbouring magnetic domains induced by the interfacial Dzyaloshinskii-Moriya interaction(17-20), which promotes non-collinear spin alignment, to realize a domain-wall inverter, the essential basic building block in all implementations of Boolean logic. We then fabricate reconfigurable NAND and NOR logic gates, and perform operations with current-induced domain-wall motion. Finally, we cascade several NAND gates to build XOR and full adder gates, demonstrating electrical control of magnetic data and device interconnection in logic circuits. Our work provides a viable platform for scalable all-electric magnetic logic, paving the way for memory-in-logic applications.


  
Sex-specific adipose tissue imprinting of regulatory T cells 期刊论文
NATURE, 2020, 579 (7800) : 581-+
作者:  Qureshi, Abdul Aziz;  Suades, Albert;  Matsuoka, Rei;  Brock, Joseph;  McComas, Sarah E.;  Nji, Emmanuel;  Orellana, Laura;  Claesson, Magnus;  Delemotte, Lucie;  Drew, David
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

Adipose tissue is an energy store and a dynamic endocrine organ(1,2). In particular, visceral adipose tissue (VAT) is critical for the regulation of systemic metabolism(3,4). Impaired VAT function-for example, in obesity-is associated with insulin resistance and type 2 diabetes(5,6). Regulatory T (T-reg) cells that express the transcription factor FOXP3 are critical for limiting immune responses and suppressing tissue inflammation, including in the VAT(7-9). Here we uncover pronounced sexual dimorphism in T-reg cells in the VAT. Male VAT was enriched for T-reg cells compared with female VAT, and T-reg cells from male VAT were markedly different from their female counterparts in phenotype, transcriptional landscape and chromatin accessibility. Heightened inflammation in the male VAT facilitated the recruitment of T-reg cells via the CCL2-CCR2 axis. Androgen regulated the differentiation of a unique IL-33-producing stromal cell population specific to the male VAT, which paralleled the local expansion of T-reg cells. Sex hormones also regulated VAT inflammation, which shaped the transcriptional landscape of VAT-resident T-reg cells in a BLIMP1 transcription factor-dependent manner. Overall, we find that sex-specific differences in T-reg cells from VAT are determined by the tissue niche in a sex-hormone-dependent manner to limit adipose tissue inflammation.


Visceral adipose tissue contains populations of regulatory T cells that exhibit sexual dimorphism, determined by the surrounding niche, and differ between male and female mice in terms of cell number, phenotype, transcriptional landscape and chromatin accessibility.


  
Entanglement of two quantum memories via fibres over dozens of kilometres 期刊论文
NATURE, 2020, 578 (7794) : 240-+
作者:  Cabrita, Rita;  Lauss, Martin;  Sanna, Adriana;  Donia, Marco;  Larsen, Mathilde Skaarup;  Mitra, Shamik;  Johansson, Iva;  Phung, Bengt;  Harbst, Katja;  Vallon-Christersson, Johan;  van Schoiack, Alison;  Loevgren, Kristina;  Warren, Sarah;  Jirstroem, Karin;  Olsson, Hakan;  Pietras, Kristian;  Ingvar, Christian;  Isaksson, Karolin;  Schadendorf, Dirk;  Schmidt, Henrik;  Bastholt, Lars;  Carneiro, Ana;  Wargo, Jennifer A.;  Svane, Inge Marie;  Jonsson, Goran
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

A quantum internet that connects remote quantum processors(1,2) should enable a number of revolutionary applications such as distributed quantum computing. Its realization will rely on entanglement of remote quantum memories over long distances. Despite enormous progress(3-12), at present the maximal physical separation achieved between two nodes is 1.3 kilometres(10), and challenges for longer distances remain. Here we demonstrate entanglement of two atomic ensembles in one laboratory via photon transmission through city-scale optical fibres. The atomic ensembles function as quantum memories that store quantum states. We use cavity enhancement to efficiently create atom-photon entanglement(13-15) and we use quantum frequency conversion(16) to shift the atomic wavelength to telecommunications wavelengths. We realize entanglement over 22 kilometres of field-deployed fibres via two-photon interference(17,18) and entanglement over 50 kilometres of coiled fibres via single-photon interference(19). Our experiment could be extended to nodes physically separated by similar distances, which would thus form a functional segment of the atomic quantum network, paving the way towards establishing atomic entanglement over many nodes and over much longer distances.


  
Native-state imaging of calcifying and noncalcifying microalgae reveals similarities in their calcium storage organelles 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (43) : 11000-11005
作者:  Gal, Assaf;  Sorrentino, Andrea;  Kahil, Keren;  Pereiro, Eva;  Faivre, Damien;  Scheffel, Andre
收藏  |  浏览/下载:7/0  |  提交时间:2019/11/27
acidocalcisome  biomineralization  intracellular calcium store  coccolithophore  cryo-X-ray tomography