GSTDTAP

浏览/检索结果: 共42条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Aerosol classification in Europe, Middle East, North Africa and Arabian Peninsula based on AERONET Version 3 期刊论文
ATMOSPHERIC RESEARCH, 2020, 239
作者:  Logothetis, Stavros-Andreas;  Salamalikis, Vasileios;  Kazantzidis, Andreas
收藏  |  浏览/下载:13/0  |  提交时间:2020/08/18
Aerosol  Climatology  Aerosol classification  AERONET  Aerosol optical properties  
Classifying aerosol particles through the combination of optical and physical-chemical properties: Results from a wintertime campaign in Rome (Italy) 期刊论文
ATMOSPHERIC RESEARCH, 2020, 235
作者:  Valentini, S.;  Barnaba, F.;  Bernardoni, V;  Calzolai, G.;  Costabile, F.;  Di Liberto, L.;  Forello, A. C.;  Gobbi, G. P.;  Gualtieri, M.;  Lucarelli, F.;  Nava, S.;  Petralia, E.;  Valli, G.;  Wiedensohler, A.;  Vecchi, R.
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/02
Intensive optical properties  High time resolution  Aerosol classification schemes  
Localization and delocalization of light in photonic moire lattices 期刊论文
NATURE, 2020, 577 (7788) : 42-+
作者:  Wang, Peng;  Zheng, Yuanlin;  Chen, Xianfeng;  Huang, Changming;  Kartashov, Yaroslav V.;  Torner, Lluis;  Konotop, Vladimir V.;  Ye, Fangwei
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

Moire lattices consist of two superimposed identical periodic structures with a relative rotation angle. Moire lattices have several applications in everyday life, including artistic design, the textile industry, architecture, image processing, metrology and interferometry. For scientific studies, they have been produced using coupled graphene-hexagonal boron nitride monolayers(1,2), graphene-graphene layers(3,4) and graphene quasicrystals on a silicon carbide surface(5). The recent surge of interest in moire lattices arises from the possibility of exploring many salient physical phenomena in such systems  examples include commensurable-incommensurable transitions and topological defects(2), the emergence of insulating states owing to band flattening(3,6), unconventional superconductivity(4) controlled by the rotation angle(7,8), the quantum Hall effect(9), the realization of non-Abelian gauge potentials(10) and the appearance of quasicrystals at special rotation angles(11). A fundamental question that remains unexplored concerns the evolution of waves in the potentials defined by moire lattices. Here we experimentally create two-dimensional photonic moire lattices, which-unlike their material counterparts-have readily controllable parameters and symmetry, allowing us to explore transitions between structures with fundamentally different geometries (periodic, general aperiodic and quasicrystal). We observe localization of light in deterministic linear lattices that is based on flatband physics(6), in contrast to previous schemes based on light diffusion in optical quasicrystals(12), where disorder is required(13) for the onset of Anderson localization(14) (that is, wave localization in random media). Using commensurable and incommensurable moire patterns, we experimentally demonstrate the twodimensional localization-delocalization transition of light. Moire lattices may feature an almost arbitrary geometry that is consistent with the crystallographic symmetry groups of the sublattices, and therefore afford a powerful tool for controlling the properties of light patterns and exploring the physics of periodic-aperiodic phase transitions and two-dimensional wavepacket phenomena relevant to several areas of science, including optics, acoustics, condensed matter and atomic physics.


  
Confinement of atomically defined metal halide sheets in a metal-organic framework 期刊论文
NATURE, 2020, 577 (7788) : 64-+
作者:  Gonzalez, Miguel I.;  Turkiewicz, Ari B.;  Darago, Lucy E.;  Oktawiec, Julia;  Bustillo, Karen;  Grandjean, Fernande;  Long, Gary J.;  Long, Jeffrey R.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

The size-dependent and shape-dependent characteristics that distinguish nanoscale materials from bulk solids arise from constraining the dimensionality of an inorganic structure(1-3). As a consequence, many studies have focused on rationally shaping these materials to influence and enhance their optical, electronic, magnetic and catalytic properties(4-6). Although a select number of stable clusters can typically be synthesized within the nanoscale regime for a specific composition, isolating clusters of a predetermined size and shape remains a challenge, especially for those derived from two-dimensional materials. Here we realize a multidentate coordination environment in a metal-organic framework to stabilize discrete inorganic clusters within a porous crystalline support. We show confined growth of atomically defined nickel(ii) bromide, nickel(ii) chloride, cobalt(ii) chloride and iron(ii) chloride sheets through the peripheral coordination of six chelating bipyridine linkers. Notably, confinement within the framework defines the structure and composition of these sheets and facilitates their precise characterization by crystallography. Each metal(ii) halide sheet represents a fragment excised from a single layer of the bulk solid structure, and structures obtained at different precursor loadings enable observation of successive stages of sheet assembly. Finally, the isolated sheets exhibit magnetic behaviours distinct from those of the bulk metal halides, including the isolation of ferromagnetically coupled large-spin ground states through the elimination of long-range, interlayer magnetic ordering. Overall, these results demonstrate that the pore environment of a metal-organic framework can be designed to afford precise control over the size, structure and spatial arrangement of inorganic clusters.


  
Spectroscopic confirmation of a mature galaxy cluster at a redshift of 2 期刊论文
NATURE, 2020, 577 (7788) : 39-+
作者:  Willis, J. P.;  Canning, R. E. A.;  Noordeh, E. S.;  Allen, S. W.;  King, A. L.;  Mantz, A.;  Morris, R. G.;  Stanford, S. A.;  Brammer, G.
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

Galaxy clusters are the most massive virialized structures in the Universe and are formed through the gravitational accretion of matter over cosmic time(1). The discovery(2) of an evolved galaxy cluster at redshift z = 2, corresponding to a look-back time of 10.4 billion years, provides an opportunity to study its properties. The galaxy cluster XLSSC 122 was originally detected as a faint, extended X-ray source in the XMM Large Scale Structure survey and was revealed to be coincident with a compact over-density of galaxies(2) with photometric redshifts of 1.9 +/- 0.2. Subsequent observations3 at millimetre wavelengths detected a Sunyaev-Zel'  dovich decrement along the line of sight to XLSSC 122, thus confirming the existence of hot intracluster gas, while deep imaging spectroscopy from the European Space Agency'  s X-ray Multi-Mirror Mission (XMM-Newton) revealed(4) an extended, X-ray-bright gaseous atmosphere with a virial temperature of 60 million Kelvin, enriched with metals to the same extent as are local clusters. Here we report optical spectroscopic observations of XLSSC 122 and identify 37 member galaxies at a mean redshift of 1.98, corresponding to a look-back time of 10.4 billion years. We use photometry to determine a mean, dust-free stellar age of 2.98 billion years, indicating that star formation commenced in these galaxies at a mean redshift of 12, when the Universe was only 370 million years old. The full range of inferred formation redshifts, including the effects of dust, covers the interval from 7 to 13. These observations confirm that XLSSC 122 is a remarkably mature galaxy cluster with both evolved stellar populations in the member galaxies and a hot, metal-rich gas composing the intracluster medium.


  
PM2.5 Humic-like substances over Xi'an, China: Optical properties, chemical functional group, and source identification 期刊论文
ATMOSPHERIC RESEARCH, 2020, 234
作者:  Zhang, Tian;  Shen, Zhenxing;  Zhang, Leiming;  Tang, Zhuoyue;  Zhang, Qian;  Chen, Qingcai;  Lei, Yali;  Zeng, Yaling;  Xu, Hongmei;  Cao, Junji
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/02
Humic-like substances  Optical properties  Chemical groups  Sources  
A Flexible Parameterization for Shortwave and Longwave Optical Properties of Ice Crystals and Derived Bulk Optical Properties for Climate Models 期刊论文
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2020, 77 (4) : 1245-1260
作者:  van Diedenhoven, Bastiaan;  Cairns, Brian
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
Cirrus clouds  Cloud radiative effects  Optical properties  
Global Statistics of Ice Microphysical and Optical Properties at Tops of Optically Thick Ice Clouds 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (6)
作者:  van Diedenhoven, Bastiaan;  Ackerman, Andrew S.;  Fridlind, Ann M.;  Cairns, Brian;  Riedi, Jerome
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/02
ice clouds  ice growth  microphysics  climate  optical properties  
Simulation of Hubbard model physics in WSe2/WS2 moire superlattices 期刊论文
NATURE, 2020, 579 (7799) : 353-+
作者:  Stein, Reed M.;  Kang, Hye Jin;  McCorvy, John D.;  Glatfelter, Grant C.;  Jones, Anthony J.;  Che, Tao;  Slocum, Samuel;  Huang, Xi-Ping;  Savych, Olena;  Moroz, Yurii S.;  Stauch, Benjamin;  Johansson, Linda C.;  Cherezov, Vadim;  Kenakin, Terry;  Irwin, John J.;  Shoichet, Brian K.;  Roth, Bryan L.;  Dubocovich, Margarita L.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Study of WSe2/WS2 moire superlattices reveals the phase diagram of the triangular-lattice Hubbard model, including a Mott insulating state at half-filling and a possible magnetic quantum phase transition near 0.6 filling.


The Hubbard model, formulated by physicist John Hubbard in the 1960s(1), is a simple theoretical model of interacting quantum particles in a lattice. The model is thought to capture the essential physics of high-temperature superconductors, magnetic insulators and other complex quantum many-body ground states(2,3). Although the Hubbard model provides a greatly simplified representation of most real materials, it is nevertheless difficult to solve accurately except in the one-dimensional case(2,3). Therefore, the physical realization of the Hubbard model in two or three dimensions, which can act as an analogue quantum simulator (that is, it can mimic the model and simulate its phase diagram and dynamics(4,5)), has a vital role in solving the strong-correlation puzzle, namely, revealing the physics of a large number of strongly interacting quantum particles. Here we obtain the phase diagram of the two-dimensional triangular-lattice Hubbard model by studying angle-aligned WSe2/WS2 bilayers, which form moire superlattices(6) because of the difference between the lattice constants of the two materials. We probe the charge and magnetic properties of the system by measuring the dependence of its optical response on an out-of-plane magnetic field and on the gate-tuned carrier density. At half-filling of the first hole moire superlattice band, we observe a Mott insulating state with antiferromagnetic Curie-Weiss behaviour, as expected for a Hubbard model in the strong-interaction regime(2,3,7-9). Above half-filling, our experiment suggests a possible quantum phase transition from an antiferromagnetic to a weak ferromagnetic state at filling factors near 0.6. Our results establish a new solid-state platform based on moire superlattices that can be used to simulate problems in strong-correlation physics that are described by triangular-lattice Hubbard models.


  
Individual Particle Characteristics, Optical Properties and Evolution of an Extreme Long-Range Transported Biomass Burning Event in the European Arctic (Ny-angstrom lesund, Svalbard Islands) 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (5)
作者:  Moroni, B.;  Ritter, C.;  Crocchianti, S.;  Markowicz, K.;  Mazzola, M.;  Becagli, S.;  Traversi, R.;  Krejci, R.;  Tunved, P.;  Cappelletti, D.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/02
SEM-EDS  particle size distribution  aerosol optical properties  closure studies  aerosol evolution