GSTDTAP

浏览/检索结果: 共35条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
全球地震台网分辨率的提高将有助于低频地震数据的获取 快报文章
地球科学快报,2022年第09期
作者:  王立伟
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:646/0  |  提交时间:2022/05/10
Global Seismographic Network  Low-Frequency Seismology  
Current European flood-rich period exceptional compared with past 500 years 期刊论文
NATURE, 2020, 583 (7817) : 560-+
作者:  ;  nter Blö;  schl;  Andrea Kiss;  Alberto Viglione;  Mariano Barriendos;  Oliver Bö;  hm;  Rudolf Brá;  zdil;  Denis Coeur;  Gaston Demaré;  e;  Maria Carmen Llasat;  Neil Macdonald;  Dag Retsö;  Lars Roald;  Petra Schmocker-Fackel;  Inê;  s Amorim;  Monika Bě;  ;  nová;  Gerardo Benito;  Chiara Bertolin;  Dario Camuffo;  Daniel Cornel;  Radosł;  aw Doktor;  ;  bor Elleder;  Silvia Enzi;  Joã;  o Carlos Garcia;  ;  diger Glaser;  Julia Hall;  Klaus Haslinger;  Michael Hofstä;  tter;  ;  rgen Komma;  Danuta Limanó;  wka;  David Lun;  Andrei Panin;  Juraj Parajka;  Hrvoje Petrić;  Fernando S. Rodrigo;  Christian Rohr;  Johannes Schö;  nbein;  Lothar Schulte;  Luí;  s Pedro Silva;  Willem H. J. Toonen;  Peter Valent;  ;  rgen Waser;  Oliver Wetter
收藏  |  浏览/下载:40/0  |  提交时间:2020/08/09

There are concerns that recent climate change is altering the frequency and magnitude of river floods in an unprecedented way(1). Historical studies have identified flood-rich periods in the past half millennium in various regions of Europe(2). However, because of the low temporal resolution of existing datasets and the relatively low number of series, it has remained unclear whether Europe is currently in a flood-rich period from a long-term perspective. Here we analyse how recent decades compare with the flood history of Europe, using a new database composed of more than 100 high-resolution (sub-annual) historical flood series based on documentary evidence covering all major regions of Europe. We show that the past three decades were among the most flood-rich periods in Europe in the past 500 years, and that this period differs from other flood-rich periods in terms of its extent, air temperatures and flood seasonality. We identified nine flood-rich periods and associated regions. Among the periods richest in floods are 1560-1580 (western and central Europe), 1760-1800 (most of Europe), 1840-1870 (western and southern Europe) and 1990-2016 (western and central Europe). In most parts of Europe, previous flood-rich periods occurred during cooler-than-usual phases, but the current flood-rich period has been much warmer. Flood seasonality is also more pronounced in the recent period. For example, during previous flood and interflood periods, 41 per cent and 42 per cent of central European floods occurred in summer, respectively, compared with 55 per cent of floods in the recent period. The exceptional nature of the present-day flood-rich period calls for process-based tools for flood-risk assessment that capture the physical mechanisms involved, and management strategies that can incorporate the recent changes in risk.


Analysis of thousands of historical documents recording floods in Europe shows that flooding characteristics in recent decades are unlike those of previous centuries.


  
Oxygen Ion Escape From Venus Is Modulated by Ultra-Low Frequency Waves 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (11)
作者:  Jarvinen, Riku;  Alho, Markku;  Kallio, Esa;  Pulkkinen, Tuija
收藏  |  浏览/下载:9/0  |  提交时间:2020/05/20
Venus  solar wind interaction  ion escape  foreshock  ultra-low frequency waves  
Detection of metastable electronic states by Penning trap mass spectrometry 期刊论文
NATURE, 2020, 581 (7806) : 42-+
作者:  Rauch, Jennifer N.;  Luna, Gabriel;  Guzman, Elmer;  Audouard, Morgane;  Challis, Collin;  Sibih, Youssef E.;  Leshuk, Carolina;  Hernandez, Israel;  Wegmann, Susanne;  Hyman, Bradley T.;  Gradinaru, Viviana;  Kampmann, Martin;  Kosik, Kenneth S.
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

State-of-the-art optical clocks(1) achieve precisions of 10(-18) or better using ensembles of atoms in optical lattices(2,3) or individual ions in radio-frequency traps(4,5). Promising candidates for use in atomic clocks are highly charged ions(6) (HCIs) and nuclear transitions(7), which are largely insensitive to external perturbations and reach wavelengths beyond the optical range(8) that are accessible to frequency combs(9). However, insufficiently accurate atomic structure calculations hinder the identification of suitable transitions in HCIs. Here we report the observation of a long-lived metastable electronic state in an HCI by measuring the mass difference between the ground and excited states in rhenium, providing a non-destructive, direct determination of an electronic excitation energy. The result is in agreement with advanced calculations. We use the high-precision Penning trap mass spectrometer PENTATRAP to measure the cyclotron frequency ratio of the ground state to the metastable state of the ion with a precision of 10(-11)-an improvement by a factor of ten compared with previous measurements(10,11). With a lifetime of about 130 days, the potential soft-X-ray frequency reference at 4.96 x 10(16) hertz (corresponding to a transition energy of 202 electronvolts) has a linewidth of only 5 x 10(-8) hertz and one of the highest electronic quality factors (10(24)) measured experimentally so far. The low uncertainty of our method will enable searches for further soft-X-ray clock transitions(8,12) in HCIs, which are required for precision studies of fundamental physics(6).


Penning trap mass spectrometry is used to measure the electronic transition energy from a long-lived metastable state to the ground state in highly charged rhenium ions with a precision of 10(-11).


  
Massively parallel coherent laser ranging using a soliton microcomb 期刊论文
NATURE, 2020, 581 (7807) : 164-+
作者:  Casanova, Emmanuelle;  Knowles, Timothy D. J.;  Bayliss, Alex;  Dunne, Julie;  Baranski, Marek Z.;  Denaire, Anthony;  Lefranc, Philippe;  di Lernia, Savino;  Roffet-Salque, Melanie;  Smyth, Jessica;  Barclay, Alistair;  Gillard, Toby;  Classen, Erich;  Coles, Bryony;  Ilett, Michael;  Jeunesse, Christian;  Krueger, Marta;  Marciniak, Arkadiusz;  Minnitt, Steve;  Rotunno, Rocco;  van de Velde, Pieter;  van Wijk, Ivo;  Cotton, Jonathan;  Daykin, Andy;  Evershed, Richard P.
收藏  |  浏览/下载:46/0  |  提交时间:2020/07/03

Coherent ranging, also known as frequency-modulated continuous-wave (FMCW) laser-based light detection and ranging (lidar)(1) is used for long-range three-dimensional distance and velocimetry in autonomous driving(2,3). FMCW lidar maps distance to frequency(4,5) using frequency-chirped waveforms and simultaneously measures the Doppler shift of the reflected laser light, similar to sonar or radar(6,7) and coherent detection prevents interference from sunlight and other lidar systems. However, coherent ranging has a lower acquisition speed and requires precisely chirped(8) and highly coherent(5) laser sources, hindering widespread use of the lidar system and impeding parallelization, compared to modern time-of-flight ranging systems that use arrays of individual lasers. Here we demonstrate a massively parallel coherent lidar scheme using an ultra-low-loss photonic chip-based soliton microcomb(9). By fast chirping of the pump laser in the soliton existence range(10) of a microcomb with amplitudes of up to several gigahertz and a sweep rate of up to ten megahertz, a rapid frequency change occurs in the underlying carrier waveform of the soliton pulse stream, but the pulse-to-pulse repetition rate of the soliton pulse stream is retained. As a result, the chirp from a single narrow-linewidth pump laser is transferred to all spectral comb teeth of the soliton at once, thus enabling parallelism in the FMCW lidar. Using this approach we generate 30 distinct channels, demonstrating both parallel distance and velocity measurements at an equivalent rate of three megapixels per second, with the potential to improve sampling rates beyond 150 megapixels per second and to increase the image refresh rate of the FMCW lidar by up to two orders of magnitude without deterioration of eye safety. This approach, when combined with photonic phase arrays(11) based on nanophotonic gratings(12), provides a technological basis for compact, massively parallel and ultrahigh-frame-rate coherent lidar systems.


  
Very regular high-frequency pulsation modes in young intermediate-mass stars 期刊论文
NATURE, 2020, 581 (7807) : 147-+
作者:  Zhao, Chuangqi;  Zhang, Pengchao;  Zhou, Jiajia;  Qi, Shuanhu;  Yamauchi, Yoshihiro;  Shi, Ruirui;  Fang, Ruochen;  Ishida, Yasuhiro;  Wang, Shutao;  Tomsia, Antoni P.;  Jiang, Lei;  Liu, Mingjie
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Asteroseismology probes the internal structures of stars by using their natural pulsation frequencies(1). It relies on identifying sequences of pulsation modes that can be compared with theoretical models, which has been done successfully for many classes of pulsators, including low-mass solar-type stars(2), red giants(3), high-mass stars(4) and white dwarfs(5). However, a large group of pulsating stars of intermediate mass-the so-called delta Scuti stars-have rich pulsation spectra for which systematic mode identification has not hitherto been possible(6,7). This arises because only a seemingly random subset of possible modes are excited and because rapid rotation tends to spoil regular patterns(8-10). Here we report the detection of remarkably regular sequences of high-frequency pulsation modes in 60 intermediate-mass main-sequence stars, which enables definitive mode identification. The space motions of some of these stars indicate that they are members of known associations of young stars, as confirmed by modelling of their pulsation spectra.


The pulsation spectra of intermediate-mass stars (so-called delta Scuti stars) have been challenging to analyse, but new observations of 60 such stars reveal remarkably regular sequences of high-frequency pulsation modes.


  
Frequency-Dependent Behavior of Zonal Jet Variability 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (6)
作者:  Lindgren, Erik A.;  Sheshadri, Aditi;  Plumb, R. Alan
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
Storm tracks  Southern Annular Mode  Jet shift  Low-frequency behavior  Temporal filter  
Operation of a silicon quantum processor unit cell above one kelvin 期刊论文
NATURE, 2020, 580 (7803) : 350-+
作者:  Han, Kyuho;  Pierce, Sarah E.;  Li, Amy;  Spees, Kaitlyn;  Anderson, Grace R.;  Seoane, Jose A.;  Lo, Yuan-Hung;  Dubreuil, Michael;  Olivas, Micah;  Kamber, Roarke A.;  Wainberg, Michael;  Kostyrko, Kaja;  Kelly, Marcus R.;  Yousefi, Maryam;  Simpkins, Scott W.;  Yao, David
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Quantum computers are expected to outperform conventional computers in several important applications, from molecular simulation to search algorithms, once they can be scaled up to large numbers-typically millions-of quantum bits (qubits)(1-3). For most solid-state qubit technologies-for example, those using superconducting circuits or semiconductor spins-scaling poses a considerable challenge because every additional qubit increases the heat generated, whereas the cooling power of dilution refrigerators is severely limited at their operating temperature (less than 100 millikelvin)(4-6). Here we demonstrate the operation of a scalable silicon quantum processor unit cell comprising two qubits confined to quantum dots at about 1.5 kelvin. We achieve this by isolating the quantum dots from the electron reservoir, and then initializing and reading the qubits solely via tunnelling of electrons between the two quantum dots(7-9). We coherently control the qubits using electrically driven spin resonance(10,11) in isotopically enriched silicon(12 28)Si, attaining single-qubit gate fidelities of 98.6 per cent and a coherence time of 2 microseconds during '  hot'  operation, comparable to those of spin qubits in natural silicon at millikelvin temperatures(13-16). Furthermore, we show that the unit cell can be operated at magnetic fields as low as 0.1 tesla, corresponding to a qubit control frequency of 3.5 gigahertz, where the qubit energy is well below the thermal energy. The unit cell constitutes the core building block of a full-scale silicon quantum computer and satisfies layout constraints required by error-correction architectures(8),(17). Our work indicates that a spin-based quantum computer could be operated at increased temperatures in a simple pumped He-4 system (which provides cooling power orders of magnitude higher than that of dilution refrigerators), thus potentially enabling the integration of classical control electronics with the qubit array(18,19).


  
Coherent laser spectroscopy of highly charged ions using quantum logic 期刊论文
NATURE, 2020, 578 (7793) : 60-+
作者:  Oh, Myoung Hwan;  Cho, Min Gee;  Chung, Dong Young;  Park, Inchul;  Kwon, Youngwook Paul;  Ophus, Colin;  Kim, Dokyoon;  Kim, Min Gyu;  Jeong, Beomgyun;  Gu, X. Wendy;  Jo, Jinwoung;  Yoo, Ji Mun;  Hong, Jaeyoung;  McMains, Sara;  Kang, Kisuk;  Sung, Yung-Eun;  Alivisatos, A. Paul;  Hyeon, Taeghwan
收藏  |  浏览/下载:53/0  |  提交时间:2020/07/03

Precision spectroscopy of atomic systems(1) is an invaluable tool for the study of fundamental interactions and symmetries(2). Recently, highly charged ions have been proposed to enable sensitive tests of physics beyond the standard model(2-5) and the realization of high-accuracy atomic clocks(3,5), owing to their high sensitivity to fundamental physics and insensitivity to external perturbations, which result from the high binding energies of their outer electrons. However, the implementation of these ideas has been hindered by the low spectroscopic accuracies (of the order of parts per million) achieved so far(6-8). Here we cool trapped, highly charged argon ions to the lowest temperature reported so far, and study them using coherent laser spectroscopy, achieving an increase in precision of eight orders of magnitude. We use quantum logic spectroscopy(9,10) to probe the forbidden optical transition in Ar-40(13+) at a wavelength of 441 nanometres and measure its excited-state lifetime and g-factor. Our work unlocks the potential of highly charged ions as ubiquitous atomic systems for use in quantum information processing, as frequency standards and in highly sensitive tests of fundamental physics, such as searches for dark-matter candidates(11) or violations of fundamental symmetries(2).


The precision of laser spectroscopy of highly charged ions is improved by eight orders of magnitude by cooling trapped, highly charged ions and using quantum logic spectroscopy, thereby enabling tests of fundamental physics.


  
Characteristics of Shallow Low-Frequency Earthquakes off the Kii Peninsula, Japan, in 2004 Revealed by Ocean Bottom Seismometers 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (23) : 13737-13745
作者:  Tamaribuchi, Koji;  Kobayashi, Akio;  Nishimiya, Takahito;  Hirose, Fuyuki;  Annoura, Satoshi
收藏  |  浏览/下载:0/0  |  提交时间:2020/02/17
slow earthquake  shallow low-frequency earthquake  Nankai Trough  tidal response