GSTDTAP

浏览/检索结果: 共25条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
NOC发布《2020—2025战略优先事项:明确我们的未来》 快报文章
资源环境快报,2020年第15期
作者:  薛明媚,吴秀平
Microsoft Word(21Kb)  |  收藏  |  浏览/下载:356/3  |  提交时间:2020/08/16
The ocean  In the future  
Potential for large-scale CO2 removal via enhanced rock weathering with croplands 期刊论文
NATURE, 2020, 583 (7815) : 242-+
作者:  David J. Beerling;  Euripides P. Kantzas;  Mark R. Lomas;  Peter Wade;  Rafael M. Eufrasio;  Phil Renforth;  Binoy Sarkar;  M. Grace Andrews;  Rachael H. James;  Christopher R. Pearce;  Jean-Francois Mercure;  Hector Pollitt;  Philip B. Holden;  Neil R. Edwards;  Madhu Khanna;  Lenny Koh;  Shaun Quegan;  Nick F. Pidgeon;  Ivan A. Janssens;  James Hansen;  Steven A. Banwart
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/14

Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO2) removal (CDR), which is now necessary to mitigate anthropogenic climate change(1). ERW also has possible co-benefits for improved food and soil security, and reduced ocean acidification(2-4). Here we use an integrated performance modelling approach to make an initial techno-economic assessment for 2050, quantifying how CDR potential and costs vary among nations in relation to business-as-usual energy policies and policies consistent with limiting future warming to 2 degrees Celsius(5). China, India, the USA and Brazil have great potential to help achieve average global CDR goals of 0.5 to 2gigatonnes of carbon dioxide (CO2) per year with extraction costs of approximately US$80-180 per tonne of CO2. These goals and costs are robust, regardless of future energy policies. Deployment within existing croplands offers opportunities to align agriculture and climate policy. However, success will depend upon overcoming political and social inertia to develop regulatory and incentive frameworks. We discuss the challenges and opportunities of ERW deployment, including the potential for excess industrial silicate materials (basalt mine overburden, concrete, and iron and steel slag) to obviate the need for new mining, as well as uncertainties in soil weathering rates and land-ocean transfer of weathered products.


  
Millennial-scale hydroclimate control of tropical soil carbon storage 期刊论文
NATURE, 2020, 581 (7806) : 63-+
作者:  Lam, Tommy Tsan-Yuk;  Jia, Na;  Zhang, Ya-Wei;  Shum, Marcus Ho-Hin;  Jiang, Jia-Fu;  Zhu, Hua-Chen;  Tong, Yi-Gang;  Shi, Yong-Xia;  Ni, Xue-Bing;  Liao, Yun-Shi;  Li, Wen-Juan;  Jiang, Bao-Gui;  Wei, Wei;  Yuan, Ting-Ting;  Zheng, Kui;  Cui, Xiao-Ming;  Li, Jie;  Pei, Guang-Qian
收藏  |  浏览/下载:25/0  |  提交时间:2020/05/13

Over the past 18,000 years, the residence time and amount of soil carbon stored in the Ganges-Brahmaputra basin have been controlled by the intensity of Indian Summer Monsoon rainfall, with greater carbon destabilization during wetter, warmer conditions.


The storage of organic carbon in the terrestrial biosphere directly affects atmospheric concentrations of carbon dioxide over a wide range of timescales. Within the terrestrial biosphere, the magnitude of carbon storage can vary in response to environmental perturbations such as changing temperature or hydroclimate(1), potentially generating feedback on the atmospheric inventory of carbon dioxide. Although temperature controls the storage of soil organic carbon at mid and high latitudes(2,3), hydroclimate may be the dominant driver of soil carbon persistence in the tropics(4,5)  however, the sensitivity of tropical soil carbon turnover to large-scale hydroclimate variability remains poorly understood. Here we show that changes in Indian Summer Monsoon rainfall have controlled the residence time of soil carbon in the Ganges-Brahmaputra basin over the past 18,000 years. Comparison of radiocarbon ages of bulk organic carbon and terrestrial higher-plant biomarkers with co-located palaeohydrological records(6) reveals a negative relationship between monsoon rainfall and soil organic carbon stocks on a millennial timescale. Across the deglaciation period, a depletion of basin-wide soil carbon stocks was triggered by increasing rainfall and associated enhanced soil respiration rates. Our results suggest that future hydroclimate changes in tropical regions are likely to accelerate soil carbon destabilization, further increasing atmospheric carbon dioxide concentrations.


  
Hidden neural states underlie canary song syntax 期刊论文
NATURE, 2020
作者:  Bao, Han;  Duan, Junlei;  Jin, Shenchao;  Lu, Xingda;  Li, Pengxiong;  Qu, Weizhi;  Wang, Mingfeng;  Novikova, Irina;  Mikhailov, Eugeniy E.;  Zhao, Kai-Feng;  Molmer, Klaus;  Shen, Heng;  Xiao, Yanhong
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Neurons in the canary premotor cortex homologue encode past song phrases and transitions, carrying information relevant to future choice of phrases as '  hidden states'  during song.


Coordinated skills such as speech or dance involve sequences of actions that follow syntactic rules in which transitions between elements depend on the identities and order of past actions. Canary songs consist of repeated syllables called phrases, and the ordering of these phrases follows long-range rules(1)in which the choice of what to sing depends on the song structure many seconds prior. The neural substrates that support these long-range correlations are unknown. Here, using miniature head-mounted microscopes and cell-type-specific genetic tools, we observed neural activity in the premotor nucleus HVC(2-4)as canaries explored various phrase sequences in their repertoire. We identified neurons that encode past transitions, extending over four phrases and spanning up to four seconds and forty syllables. These neurons preferentially encode past actions rather than future actions, can reflect more than one song history, and are active mostly during the rare phrases that involve history-dependent transitions in song. These findings demonstrate that the dynamics of HVC include '  hidden states'  that are not reflected in ongoing behaviour but rather carry information about prior actions. These states provide a possible substrate for the control of syntax transitions governed by long-range rules.


  
Hair-bearing human skin generated entirely from pluripotent stem cells 期刊论文
NATURE, 2020
作者:  von Appen, Alexander;  LaJoie, Dollie;  Johnson, Isabel E.;  Trnka, Michael J.;  Pick, Sarah M.;  Burlingame, Alma L.;  Ullman, Katharine S.;  Frost, Adam
收藏  |  浏览/下载:52/0  |  提交时间:2020/07/03

Skin organoids generated in vitro from human pluripotent stem cells form complex, multilayered skin tissue with hair follicles, sebaceous glands and neural circuitry, and integrate with endogenous skin when grafted onto immunocompromised mice.


The skin is a multilayered organ, equipped with appendages (that is, follicles and glands), that is critical for regulating body temperature and the retention of bodily fluids, guarding against external stresses and mediating the sensation of touch and pain(1,2). Reconstructing appendage-bearing skin in cultures and in bioengineered grafts is a biomedical challenge that has yet to be met(3-9). Here we report an organoid culture system that generates complex skin from human pluripotent stem cells. We use stepwise modulation of the transforming growth factor beta (TGF beta) and fibroblast growth factor (FGF) signalling pathways to co-induce cranial epithelial cells and neural crest cells within a spherical cell aggregate. During an incubation period of 4-5 months, we observe the emergence of a cyst-like skin organoid composed of stratified epidermis, fat-rich dermis and pigmented hair follicles that are equipped with sebaceous glands. A network of sensory neurons and Schwann cells form nerve-like bundles that target Merkel cells in organoid hair follicles, mimicking the neural circuitry associated with human touch. Single-cell RNA sequencing and direct comparison to fetal specimens suggest that the skin organoids are equivalent to the facial skin of human fetuses in the second trimester of development. Moreover, we show that skin organoids form planar hair-bearing skin when grafted onto nude mice. Together, our results demonstrate that nearly complete skin can self-assemble in vitro and be used to reconstitute skin in vivo. We anticipate that our skin organoids will provide a foundation for future studies of human skin development, disease modelling and reconstructive surgery.


  
APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline 期刊论文
NATURE, 2020, 581 (7806) : 70-+
作者:  Doherty, Tiarnan A. S.;  Winchester, Andrew J.;  Macpherson, Stuart;  Johnstone, Duncan N.;  Pareek, Vivek;  Tennyson, Elizabeth M.;  Kosar, Sofiia;  Kosasih, Felix U.;  Anaya, Miguel;  Abdi-Jalebi, Mojtaba;  Andaji-Garmaroudi, Zahra;  Wong, E. Laine;  Madeo, Julien;  Chiang, Yu-Hsien;  Park, Ji-Sang;  Jung, Young-Kwang;  Petoukhoff, Christopher E.;  Divitini, Giorgio;  Man, Michael K. L.;  Ducati, Caterina;  Walsh, Aron;  Midgley, Paul A.;  Dani, Keshav M.;  Stranks, Samuel D.
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/03

Breakdown of the blood-brain barrier in individuals carrying the epsilon 4 allele of the APOE gene, but not the epsilon 3 allele, increases with and predicts cognitive impairment and is independent of amyloid beta or tau pathology.


Vascular contributions to dementia and Alzheimer'  s disease are increasingly recognized(1-6). Recent studies have suggested that breakdown of the blood-brain barrier (BBB) is an early biomarker of human cognitive dysfunction(7), including the early clinical stages of Alzheimer'  s disease(5,8-10). The E4 variant of apolipoprotein E (APOE4), the main susceptibility gene for Alzheimer'  s disease(11-14), leads to accelerated breakdown of the BBB and degeneration of brain capillary pericytes(15-19), which maintain BBB integrity(20-22). It is unclear, however, whether the cerebrovascular effects of APOE4 contribute to cognitive impairment. Here we show that individuals bearing APOE4 (with the epsilon 3/epsilon 4 or epsilon 4/epsilon 4 alleles) are distinguished from those without APOE4 (epsilon 3/epsilon 3) by breakdown of the BBB in the hippocampus and medial temporal lobe. This finding is apparent in cognitively unimpaired APOE4 carriers and more severe in those with cognitive impairment, but is not related to amyloid-beta or tau pathology measured in cerebrospinal fluid or by positron emission tomography(23). High baseline levels of the BBB pericyte injury biomarker soluble PDGFR beta(7,8) in the cerebrospinal fluid predicted future cognitive decline in APOE4 carriers but not in non-carriers, even after controlling for amyloid-beta and tau status, and were correlated with increased activity of the BBB-degrading cyclophilin A-matrix metalloproteinase-9 pathway(19) in cerebrospinal fluid. Our findings suggest that breakdown of the BBB contributes to APOE4-associated cognitive decline independently of Alzheimer'  s disease pathology, and might be a therapeutic target in APOE4 carriers.


  
Deciphering human macrophage development at single-cell resolution 期刊论文
NATURE, 2020
作者:  Oberst, Polina;  Fievre, Sabine;  Baumann, Natalia;  Concetti, Cristina;  Bartolini, Giorgia;  Jabaudon, Denis
收藏  |  浏览/下载:20/0  |  提交时间:2020/07/03

Macrophages are the first cells of the nascent immune system to emerge during embryonic development. In mice, embryonic macrophages infiltrate developing organs, where they differentiate symbiotically into tissue-resident macrophages (TRMs)(1). However, our understanding of the origins and specialization of macrophages in human embryos is limited. Here we isolated CD45(+) haematopoietic cells from human embryos at Carnegie stages 11 to 23 and subjected them to transcriptomic profiling by single-cell RNA sequencing, followed by functional characterization of a population of CD45(+)CD34(+)CD44(+) yolk sac-derived myeloid-biased progenitors (YSMPs) by single-cell culture. We also mapped macrophage heterogeneity across multiple anatomical sites and identified diverse subsets, including various types of embryonic TRM (in the head, liver, lung and skin). We further traced the specification trajectories of TRMs from either yolk sac-derived primitive macrophages or YSMP-derived embryonic liver monocytes using both transcriptomic and developmental staging information, with a focus on microglia. Finally, we evaluated the molecular similarities between embryonic TRMs and their adult counterparts. Our data represent a comprehensive characterization of the spatiotemporal dynamics of early macrophage development during human embryogenesis, providing a reference for future studies of the development and function of human TRMs.


Single-cell RNA sequencing of haematopoietic cells from human embryos at different developmental stages sheds light on the development and specification of macrophages in different tissues.


  
The projected timing of abrupt ecological disruption from climate change 期刊论文
NATURE, 2020, 580 (7804) : 496-+
作者:  Gorgulla, Christoph;  Boeszoermenyi, Andras;  Wang, Zi-Fu;  Fischer, Patrick D.;  Coote, Paul W.;  Padmanabha Das, Krishna M.;  Malets, Yehor S.;  Radchenko, Dmytro S.;  Moroz, Yurii S.;  Scott, David A.;  Fackeldey, Konstantin;  Hoffmann, Moritz;  Iavniuk, Iryna;  Wagner, Gerhard;  Arthanari, Haribabu
收藏  |  浏览/下载:56/0  |  提交时间:2020/05/13

As anthropogenic climate change continues the risks to biodiversity will increase over time, with future projections indicating that a potentially catastrophic loss of global biodiversity is on the horizon(1-3). However, our understanding of when and how abruptly this climate-driven disruption of biodiversity will occur is limited because biodiversity forecasts typically focus on individual snapshots of the future. Here we use annual projections (from 1850 to 2100) of temperature and precipitation across the ranges of more than 30,000 marine and terrestrial species to estimate the timing of their exposure to potentially dangerous climate conditions. We project that future disruption of ecological assemblages as a result of climate change will be abrupt, because within any given ecological assemblage the exposure of most species to climate conditions beyond their realized niche limits occurs almost simultaneously. Under a high-emissions scenario (representative concentration pathway (RCP) 8.5), such abrupt exposure events begin before 2030 in tropical oceans and spread to tropical forests and higher latitudes by 2050. If global warming is kept below 2 degrees C, less than 2% of assemblages globally are projected to undergo abrupt exposure events of more than 20% of their constituent species  however, the risk accelerates with the magnitude of warming, threatening 15% of assemblages at 4 degrees C, with similar levels of risk in protected and unprotected areas. These results highlight the impending risk of sudden and severe biodiversity losses from climate change and provide a framework for predicting both when and where these events may occur.


Using annual projections of temperature and precipitation to estimate when species will be exposed to potentially harmful climate conditions reveals that disruption of ecological assemblages as a result of climate change will be abrupt and could start as early as the current decade.


  
The online competition between pro- and anti-vaccination views 期刊论文
NATURE, 2020, 582 (7811) : 230-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Insights into the interactions between pro- and anti-vaccination clusters on Facebook can enable policies and approaches that attempt to interrupt the shift to anti-vaccination views and persuade undecided individuals to adopt a pro-vaccination stance.


Distrust in scientific expertise(1-14) is dangerous. Opposition to vaccination with a future vaccine against SARS-CoV-2, the causal agent of COVID-19, for example, could amplify outbreaks(2-4), as happened for measles in 2019(5,6). Homemade remedies(7,8) and falsehoods are being shared widely on the Internet, as well as dismissals of expert advice(9-11). There is a lack of understanding about how this distrust evolves at the system level(13,14). Here we provide a map of the contention surrounding vaccines that has emerged from the global pool of around three billion Facebook users. Its core reveals a multi-sided landscape of unprecedented intricacy that involves nearly 100 million individuals partitioned into highly dynamic, interconnected clusters across cities, countries, continents and languages. Although smaller in overall size, anti-vaccination clusters manage to become highly entangled with undecided clusters in the main online network, whereas pro-vaccination clusters are more peripheral. Our theoretical framework reproduces the recent explosive growth in anti-vaccination views, and predicts that these views will dominate in a decade. Insights provided by this framework can inform new policies and approaches to interrupt this shift to negative views. Our results challenge the conventional thinking about undecided individuals in issues of contention surrounding health, shed light on other issues of contention such as climate change(11), and highlight the key role of network cluster dynamics in multi-species ecologies(15).


  
A lower X-gate in TASK channels traps inhibitors within the vestibule 期刊论文
NATURE, 2020
作者:  Chen, Tao;  Nomura, Kinya;  Wang, Xiaolin;  Sohrabi, Reza;  Xu, Jin;  Yao, Lingya;  Paasch, Bradley C.;  Ma, Li;  Kremer, James;  Cheng, Yuti;  Zhang, Li;  Wang, Nian;  Wang, Ertao;  Xin, Xiu-Fang;  He, Sheng Yang
收藏  |  浏览/下载:36/0  |  提交时间:2020/07/03

TWIK-related acid-sensitive potassium (TASK) channels-members of the two pore domain potassium (K-2P) channel family-are found in neurons(1), cardiomyocytes(2-4) and vascular smooth muscle cells(5), where they are involved in the regulation of heart rate(6), pulmonary artery tone(5,7), sleep/wake cycles(8) and responses to volatile anaesthetics(8-11). K-2P channels regulate the resting membrane potential, providing background K+ currents controlled by numerous physiological stimuli(12-15). Unlike other K-2P channels, TASK channels are able to bind inhibitors with high affinity, exceptional selectivity and very slow compound washout rates. As such, these channels are attractive drug targets, and TASK-1 inhibitors are currently in clinical trials for obstructive sleep apnoea and atrial fibrillation(16). In general, potassium channels have an intramembrane vestibule with a selectivity filter situated above and a gate with four parallel helices located below  however, the K-2P channels studied so far all lack a lower gate. Here we present the X-ray crystal structure of TASK-1, and show that it contains a lower gate-which we designate as an '  X-gate'  -created by interaction of the two crossed C-terminal M4 transmembrane helices at the vestibule entrance. This structure is formed by six residues ((VLRFMT248)-V-243) that are essential for responses to volatile anaesthetics(10), neurotransmitters(13) and G-protein-coupled receptors(13). Mutations within the X-gate and the surrounding regions markedly affect both the channel-open probability and the activation of the channel by anaesthetics. Structures of TASK-1 bound to two high-affinity inhibitors show that both compounds bind below the selectivity filter and are trapped in the vestibule by the X-gate, which explains their exceptionally low washout rates. The presence of the X-gate in TASK channels explains many aspects of their physiological and pharmacological behaviour, which will be beneficial for the future development and optimization of TASK modulators for the treatment of heart, lung and sleep disorders.


The X-ray crystal structure of the potassium channel TASK-1 reveals the presence of an X-gate, which traps small-molecule inhibitors in the intramembrane vestibule and explains their low washout rates from the channel.