GSTDTAP

浏览/检索结果: 共19条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition 期刊论文
NATURE, 2020, 577 (7790) : 421-+
作者:  Xue, Jenny Y.;  Zhao, Yulei;  Aronowitz, Jordan;  Mai, Trang T.;  Vides, Alberto;  Qeriqi, Besnik;  Kim, Dongsung;  Li, Chuanchuan;  de Stanchina, Elisa;  Mazutis, Linas;  Risso, Davide;  Lito, Piro
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

KRAS GTPases are activated in one-third of cancers, and KRAS(G12C) is one of the most common activating alterations in lung adenocarcinoma(1,2). KRAS(G12C) inhibitors(3,4) are in phase-I clinical trials and early data show partial responses in nearly half of patients with lung cancer. How cancer cells bypass inhibition to prevent maximal response to therapy is not understood. Because KRAS(G12C) cycles between an active and inactive conformation(4-6), and the inhibitors bind only to the latter, we tested whether isogenic cell populations respond in a non-uniform manner by studying the effect of treatment at a single-cell resolution. Here we report that, shortly after treatment, some cancer cells are sequestered in a quiescent state with low KRAS activity, whereas others bypass this effect to resume proliferation. This rapid divergent response occurs because some quiescent cells produce new KRAS(G12C) in response to suppressed mitogen-activated protein kinase output. New KRAS(G12C) is maintained in its active, drug-insensitive state by epidermal growth factor receptor and aurora kinase signalling. Cells without these adaptive changes-or cells in which these changes are pharmacologically inhibited-remain sensitive to drug treatment, because new KRAS(G12C) is either not available or exists in its inactive, drug-sensitive state. The direct targeting of KRAS oncoproteins has been a longstanding objective in precision oncology. Our study uncovers a flexible non-uniform fitness mechanism that enables groups of cells within a population to rapidly bypass the effect of treatment. This adaptive process must be overcome if we are to achieve complete and durable responses in the clinic.


  
Relaxation of Wind Stress Drives the Abrupt Onset of Biological Carbon Uptake in the Kerguelen Bloom: A Multisensor Approach 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (9)
作者:  Pellichero, Violaine;  Boutin, Jacqueline;  Claustre, Herve;  Merlivat, Liliane;  Sallee, Jean-baptiste;  Blain, Stephane
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
onset of the phytoplankton bloom  mixing-layer depth  in situ high-resolution data  mixed-layer depth  air-sea heat flux  wind stress  
Femtosecond-to-millisecond structural changes in a light-driven sodium pump 期刊论文
NATURE, 2020, 583 (7815) : 314-+
作者:  Moore, Luiza;  Leongamornlert, Daniel;  Coorens, Tim H. H.;  Sanders, Mathijs A.;  Ellis, Peter;  Dentro, Stefan C.;  Dawson, Kevin J.;  Butler, Tim;  Rahbari, Raheleh;  Mitchell, Thomas J.;  Maura, Francesco;  Nangalia, Jyoti;  Tarpey, Patrick S.;  Brunner, Simon F.;  Lee-Six, Henry;  Hooks, Yvette;  Moody, Sarah;  Mahbubani, Krishnaa T.;  Jimenez-Linan, Mercedes;  Brosens, Jan J.;  Iacobuzio-Donahue, Christine A.;  Martincorena, Inigo;  Saeb-Parsy, Kourosh;  Campbell, Peter J.;  Stratton, Michael R.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

Light-driven sodium pumps actively transport small cations across cellular membranes(1). These pumps are used by microorganisms to convert light into membrane potential and have become useful optogenetic tools with applications in neuroscience. Although the resting state structures of the prototypical sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) have been solved(2,3), it is unclear how structural alterations overtime allow sodium to be translocated against a concentration gradient. Here, using the Swiss X-ray Free Electron Laser(4), we have collected serial crystallographic data at ten pump-probe delays from femtoseconds to milliseconds. High-resolution structural snapshots throughout the KR2 photocycle show how retinal isomerization is completed on the femtosecond timescale and changes the local structure of the binding pocket in the early nanoseconds. Subsequent rearrangements and deprotonation of the retinal Schiff base open an electrostatic gate in microseconds. Structural and spectroscopic data, in combination with quantum chemical calculations, indicate that a sodium ion bind stransiently close to the retinal within one millisecond. In the last structural intermediate, at 20 milliseconds after activation, we identified a potential second sodium-binding site close to the extracellular exit. These results provide direct molecular insight into the dynamics of active cation transport across biological membranes.


  
Molecular architecture of the human 17S U2 snRNP 期刊论文
NATURE, 2020, 583 (7815) : 310-+
作者:  Muench, David E.;  Olsson, Andre;  Ferchen, Kyle;  Pham, Giang;  Serafin, Rachel A.;  Chutipongtanate, Somchai;  Dwivedi, Pankaj;  Song, Baobao;  Hay, Stuart;  Chetal, Kashish;  Trump-Durbin, Lisa R.;  Mookerjee-Basu, Jayati;  Zhang, Kejian;  Yu, Jennifer C.
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/03

The U2 small nuclear ribonucleoprotein (snRNP) has an essential role in the selection of the precursor mRNA branch-site adenosine, the nucleophile for the first step of splicing'  . Stable addition of U2 during early spliceosome formation requiresthe DEAD-box ATPase PRP5(2-7). Yeast U2 small nuclear RNA (snRNA) nucleotides that form base pairs with the branch site are initially sequestered in a branchpoint-interacting stem-loop (BSL)(8), but whether the human U2 snRNA folds in a similar manner is unknown. The U2 SF3B1 protein, a common mutational target in haematopoietic cancers(9), contains a HEAT domain (SF3B1(HEAT)) with an open conformation in isolated SF3b(10), but a closed conformation in spliceosomes(11), which is required for stable interaction between U2 and the branch site. Here we report a 3D cryo-electron microscopy structure ofthe human 17S U2 snRNP at a core resolution of 4.1 angstrom and combine it with protein crosslinking data to determine the molecular architecture of this snRNP. Our structure reveals that SF3B1(HEAT) interacts with PRP5 and TAT-SF1, and maintains its open conformation in U2 snRNP, and that U2 snRNA forms a BSL that is sandwiched between PRP5, TAT-SF1 and SF3B1(HEAT). Thus, substantial remodelling of the BSL and displacement of BSL-interacting proteins must occur to allow formation of the U2-branch-site helix. Our studies provide a structural explanation of why TAT-SF1 must be displaced before the stable addition of U2 to the spliceosome, and identify RNP rearrangements facilitated by PRP5 that are required for stable interaction between U2 and the branch site.


  
Temperature monitoring in mountain regions using reanalyses: lessons from the Alps 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (4)
作者:  Scherrer, Simon C.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
temperature monitoring  trends  Alps  reanalysis  evaluation  high-resolution models  data assimilation  
The structural basis for cohesin-CTCF-anchored loops 期刊论文
NATURE, 2020, 578 (7795) : 472-+
作者:  Li, Yan;  Haarhuis, Judith H. I.;  Sedeno Cacciatore, Angela;  Oldenkamp, Roel;  van Ruiten, Marjon S.;  Willems, Laureen;  Teunissen, Hans;  Muir, Kyle W.;  de Wit, Elzo;  Rowland, Benjamin D.;  Panne, Daniel
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Cohesin catalyses the folding of the genome into loops that are anchored by CTCF1. The molecular mechanism of how cohesin and CTCF structure the 3D genome has remained unclear. Here we show that a segment within the CTCF N terminus interacts with the SA2-SCC1 subunits of human cohesin. We report a crystal structure of SA2-SCC1 in complex with CTCF at a resolution of 2.7 angstrom, which reveals the molecular basis of the interaction. We demonstrate that this interaction is specifically required for CTCF-anchored loops and contributes to the positioning of cohesin at CTCF binding sites. A similar motif is present in a number of established and newly identified cohesin ligands, including the cohesin release factor WAPL(2,3). Our data suggest that CTCF enables the formation of chromatin loops by protecting cohesin against loop release. These results provide fundamental insights into the molecular mechanism that enables the dynamic regulation of chromatin folding by cohesin and CTCF.


The crystal structure of the SA2-SCC1 subunits of human cohesin in complex with CTCF reveals the molecular basis of the cohesin-CTCF interaction that enables the dynamic regulation of chromatin folding.


  
Structure of the M2 muscarinic receptor-beta-arrestin complex in a lipid nanodisc 期刊论文
NATURE, 2020, 579 (7798) : 297-+
作者:  Gate, David;  Saligrama, Naresha;  Leventhal, Olivia;  Yang, Andrew C.;  Unger, Michael S.;  Middeldorp, Jinte;  Chen, Kelly;  Lehallier, Benoit;  Channappa, Divya;  De Los Santos, Mark B.;  McBride, Alisha;  Pluvinage, John;  Elahi, Fanny;  Tam, Grace Kyin-Ye;  Kim, Yongha;  Greicius, Michael;  Wagner, Anthony D.;  Aigner, Ludwig;  Galasko, Douglas R.;  Davis, Mark M.;  Wyss-Coray, Tony
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/03

After activation by an agonist, G-protein-coupled receptors (GPCRs) recruit beta-arrestin, which desensitizes heterotrimeric G-protein signalling and promotes receptor endocytosis(1). Additionally, beta-arrestin directly regulates many cell signalling pathways that can induce cellular responses distinct from that of G proteins(2). In contrast to G proteins, for which there are many high-resolution structures in complex with GPCRs, the molecular mechanisms underlying the interaction of beta-arrestin with GPCRs are much less understood. Here we present a cryo-electron microscopy structure of beta-arrestin 1 (beta arr1) in complex with M2 muscarinic receptor (M2R) reconstituted in lipid nanodiscs. The M2R-beta arr1 complex displays a multimodal network of flexible interactions, including binding of the N domain of beta arr1 to phosphorylated receptor residues and insertion of the finger loop of beta arr1 into the M2R seven-transmembrane bundle, which adopts a conformation similar to that in the M2R-heterotrimeric G(o) protein complex(3). Moreover, the cryo-electron microscopy map reveals that the C-edge of beta arr1 engages the lipid bilayer. Through atomistic simulations and biophysical, biochemical and cellular assays, we show that the C-edge is critical for stable complex formation, beta arr1 recruitment, receptor internalization, and desensitization of G-protein activation. Taken together, these data suggest that the cooperative interactions of beta-arrestin with both the receptor and the phospholipid bilayer contribute to its functional versatility.


  
Resolving seasonal rainfall changes in the Middle East during the last interglacial period 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (50) : 24985-24990
作者:  Ian J. Orland;  Feng He;  Miryam Bar-Matthews;  Guangshan Chen;  Avner Ayalon;  John E. Kutzbach
收藏  |  浏览/下载:5/0  |  提交时间:2020/02/18
paleoclimate  seasonal-resolution  oxygen isotopes  data-model comparison  
Three-dimensional analysis of the initial stage of convective precipitation using an operational X-band polarimetric radar network 期刊论文
ATMOSPHERIC RESEARCH, 2019, 225: 45-57
作者:  Kim, Yura;  Maki, Masayuki;  Lee, Dong-In;  Jeong, Jong-Hoon;  You, Cheol-Hwan
收藏  |  浏览/下载:6/0  |  提交时间:2019/11/27
Convective precipitation  High-resolution radar data  Initial stage  X-band polarimetric radar  
Characteristics of Atmospheric Turbulence Retrieved From High Vertical-Resolution Radiosonde Data in the United States 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (14) : 7553-7579
作者:  Ko, H-C;  Chun, H-Y;  Wilson, R.;  Geller, M. A.
收藏  |  浏览/下载:5/0  |  提交时间:2019/11/27
high vertical-resolution radiosonde data (HVRRD)  turbulent layer  Thorpe analysis  Thorpe scale  eddy dissipation rate