GSTDTAP

浏览/检索结果: 共75条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Extreme climate after massive eruption of Alaska's Okmok volcano in 43 BCE and effects on the late Roman Republic and Ptolemaic Kingdom 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (27) : 15443-15449
作者:  McConnell, Joseph R.;  Sigl, Michael;  Plunkett, Gill;  Burke, Andrea;  Kim, Woon Mi;  Raible, Christoph C.;  Wilson, Andrew, I;  Manning, Joseph G.;  Ludlow, Francis;  Chellman, Nathan J.;  Innes, Helen M.;  Yang, Zhen;  Larsen, Jessica F.;  Schaefer, Janet R.;  Kipfstuhl, Sepp;  Mojtabavi, Seyedhamidreza;  Wilhelms, Frank;  Opel, Thomas;  Meyer, Hanno;  Steffensen, Jorgen Peder
收藏  |  浏览/下载:17/0  |  提交时间:2020/06/29
ice core  volcano  Okmok  Rome  climate forcing  
Intensification of the Atlantic Multidecadal Variability Since 1870: Implications and Possible Causes 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (11)
作者:  Si, Dong;  Jiang, Dabang;  Wang, Huijun
收藏  |  浏览/下载:7/0  |  提交时间:2020/08/18
Atlantic multidecadal variability intensification  climate variability and climate extremes  anthropogenic aerosol emissions  CESM single-forcing runs  
Assessing Global and Local Radiative Feedbacks Based on AGCM Simulations for 1980-2014/2017 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (12)
作者:  Zhang, Rudong;  Wang, Hailong;  Fu, Qiang;  Rasch, Philip J.
收藏  |  浏览/下载:10/0  |  提交时间:2020/06/16
radiative feedback  climate modeling  Arctic amplification  CMIP6  AMIP6  radiative forcing  
Sensitivity of Historical Climate Simulations to Uncertain Aerosol Forcing 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (13)
作者:  Dittus, Andrea J.;  Hawkins, Ed;  Wilcox, Laura J.;  Sutton, Rowan T.;  Smith, Christopher J.;  Andrews, Martin B.;  Forster, Piers M.
收藏  |  浏览/下载:7/0  |  提交时间:2020/05/25
historical aerosol forcing  climate model simulations  Forcing uncertainty  Transient Climate Response  Large ensemble  
Stratospheric Water Vapor Feedback Disclosed by a Locking Experiment 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (12)
作者:  Huang, Yi;  Wang, Yuwei;  Huang, Han
收藏  |  浏览/下载:10/0  |  提交时间:2020/05/25
stratospheric water vapor  radiative feedback  carbon dioxide  global warming  climate model  radiative forcing  
Methane, Monsoons, and Modulation of Millennial-Scale Climate 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (9)
作者:  Thirumalai, Kaustubh;  Clemens, Steven C.;  Partin, Judson W.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
methane  monsoon  modulation  orbital forcing  millennial-scale climate variability  late Pleistocene  
Enhanced Dust Influx to South Atlantic Sector of Antarctica During the Late-20th Century: Causes and Contribution to Radiative Forcing 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (8)
作者:  Laluraj, C. M.;  Rahaman, Waliur;  Thamban, Meloth;  Srivastava, Rohit
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/02
dust record  Dronning Maud Land  aerosol radiative forcing  20th century Antarctic climate  
Influences of Solar Forcing at Ultraviolet and Longer Wavelengths on Climate 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (7)
作者:  Shindell, Drew T.;  Faluvegi, Greg;  Schmidt, Gavin A.
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/02
solar forcing  climate change  
African climate response to orbital and glacial forcing in 140,000-y simulation with implications for early modern human environments 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (5) : 2255-2264
作者:  Kutzbach, John E.;  Guan, Jian;  He, Feng;  Cohen, Andrew S.;  Orland, Ian J.;  Chen, Guangshan
收藏  |  浏览/下载:15/0  |  提交时间:2020/05/13
paleoclimate  Africa  climate modeling  glacial and orbital forcing  human dispersal  
Global-scale human impact on delta morphology has led to net land area gain 期刊论文
NATURE, 2020, 577 (7791) : 514-+
作者:  Nienhuis, J. H.;  Ashton, A. D.;  Edmonds, D. A.;  Hoitink, A. J. F.;  Kettner, A. J.;  Rowland, J. C.;  Tornqvist, T. E.
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13

River deltas rank among the most economically and ecologically valuable environments on Earth. Even in the absence of sea-level rise, deltas are increasingly vulnerable to coastal hazards as declining sediment supply and climate change alter their sediment budget, affecting delta morphology and possibly leading to erosion(1-3). However, the relationship between deltaic sediment budgets, oceanographic forces of waves and tides, and delta morphology has remained poorly quantified. Here we show how the morphology of about 11,000 coastal deltas worldwide, ranging from small bayhead deltas to mega-deltas, has been affected by river damming and deforestation. We introduce a model that shows that present-day delta morphology varies across a continuum between wave (about 80 per cent), tide (around 10 per cent) and river (about 10 per cent) dominance, but that most large deltas are tide- and river-dominated. Over the past 30 years, despite sea-level rise, deltas globally have experienced a net land gain of 54 +/- 12 square kilometres per year (2 standard deviations), with the largest 1 per cent of deltas being responsible for 30 per cent of all net land area gains. Humans are a considerable driver of these net land gains-25 per cent of delta growth can be attributed to deforestation-induced increases in fluvial sediment supply. Yet for nearly 1,000 deltas, river damming(4) has resulted in a severe (more than 50 per cent) reduction in anthropogenic sediment flux, forcing a collective loss of 12 +/- 3.5 square kilometres per year (2 standard deviations) of deltaic land. Not all deltas lose land in response to river damming: deltas transitioning towards tide dominance are currently gaining land, probably through channel infilling. With expected accelerated sea-level rise(5), however, recent land gains are unlikely to be sustained throughout the twenty-first century. Understanding the redistribution of sediments by waves and tides will be critical for successfully predicting human-driven change to deltas, both locally and globally.


A global study of river deltas shows a net increase in delta area by about 54 km(2) yr(-1) over the past 30 years, in part due to deforestation-induced sediment delivery increase.