GSTDTAP

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
PM2.5 Humic-like substances over Xi'an, China: Optical properties, chemical functional group, and source identification 期刊论文
ATMOSPHERIC RESEARCH, 2020, 234
作者:  Zhang, Tian;  Shen, Zhenxing;  Zhang, Leiming;  Tang, Zhuoyue;  Zhang, Qian;  Chen, Qingcai;  Lei, Yali;  Zeng, Yaling;  Xu, Hongmei;  Cao, Junji
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/02
Humic-like substances  Optical properties  Chemical groups  Sources  
Late-stage oxidative C(sp(3))-H methylation 期刊论文
NATURE, 2020, 580 (7805) : 621-+
作者:  Fessler, Evelyn;  Eckl, Eva-Maria;  Schmitt, Sabine;  Mancilla, Igor Alves;  Meyer-Bender, Matthias F.;  Hanf, Monika;  Philippou-Massier, Julia;  Krebs, Stefan;  Zischka, Hans;  Jae, Lucas T.
收藏  |  浏览/下载:46/0  |  提交时间:2020/07/03

Frequently referred to as the '  magic methyl effect'  , the installation of methyl groups-especially adjacent (alpha) to heteroatoms-has been shown to dramatically increase the potency of biologically active molecules(1-3). However, existing methylation methods show limited scope and have not been demonstrated in complex settings(1). Here we report a regioselective and chemoselective oxidative C(sp(3))-H methylation method that is compatible with late-stage functionalization of drug scaffolds and natural products. This combines a highly site-selective and chemoselective C-H hydroxylation with a mild, functional-group-tolerant methylation. Using a small-molecule manganese catalyst, Mn(CF3PDP), at low loading (at a substrate/catalyst ratio of 200) affords targeted C-H hydroxylation on heterocyclic cores, while preserving electron-neutral and electron-rich aryls. Fluorine- or Lewis-acid-assisted formation of reactive iminium or oxonium intermediates enables the use of a mildly nucleophilic organoaluminium methylating reagent that preserves other electrophilic functionalities on the substrate. We show this late-stage C(sp(3))-H methylation on 41 substrates housing 16 different medicinally important cores that include electron-rich aryls, heterocycles, carbonyls and amines. Eighteen pharmacologically relevant molecules with competing sites-including drugs (for example, tedizolid) and natural products-are methylated site-selectively at the most electron rich, least sterically hindered position. We demonstrate the syntheses of two magic methyl substrates-an inverse agonist for the nuclear receptor RORc and an antagonist of the sphingosine-1-phosphate receptor-1-via late-stage methylation from the drug or its advanced precursor. We also show a remote methylation of the B-ring carbocycle of an abiraterone analogue. The ability to methylate such complex molecules at late stages will reduce synthetic effort and thereby expedite broader exploration of the magic methyl effect in pursuit of new small-molecule therapeutics and chemical probes.


A manganese-catalysed oxidative C(sp(3))-H methylation method allows a methyl group to be selectively installed into medicinally important heterocycles, providing a way to improve pharmaceuticals and better understand the '  magic methyl effect'  .


  
On-device lead sequestration for perovskite solar cells 期刊论文
NATURE, 2020, 578 (7796) : 555-+
作者:  Fruchart, Michel;  Zhou, Yujie;  Vitelli, Vincenzo
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Perovskite solar cells, as an emerging high-efficiency and low-cost photovoltaic technology(1-6), face obstacles on their way towards commercialization. Substantial improvements have been made to device stability(7-10), but potential issues with lead toxicity and leaching from devices remain relatively unexplored(11-16). The potential for lead leakage could be perceived as an environmental and public health risk when using perovskite solar cells in building-integrated photovoltaics(17-23). Here we present a chemical approach for on-device sequestration of more than 96 per cent of lead leakage caused by severe device damage. A coating of lead-absorbing material is applied to the front and back sides of the device stack. On the glass side of the front transparent conducting electrode, we use a transparent lead-absorbing molecular film containing phosphonic acid groups that bind strongly to lead. On the back (metal) electrode side, we place a polymer film blended with lead-chelating agents between the metal electrode and a standard photovoltaic packing film. The lead-absorbing films on both sides swell to absorb the lead, rather than dissolve, when subjected to water soaking, thus retaining structural integrity for easy collection of lead after damage.


Using lead-absorbing materials to coat the front and back of perovskite solar cells can prevent lead leaching from damaged devices, without affecting the device performance or long-term operation stability.


  
Constructing protein polyhedra via orthogonal chemical interactions 期刊论文
NATURE, 2020, 578 (7793) : 172-+
作者:  Mooley, K. P.;  Deller, A. T.;  Gottlieb, O.;  Nakar, E.;  Hallinan, G.;  Bourke, S.;  Frail, D. A.;  Horesh, A.;  Corsi, A.;  Hotokezaka, K.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Many proteins exist naturally as symmetrical homooligomers or homopolymers(1). The emergent structural and functional properties of such protein assemblies have inspired extensive efforts in biomolecular design(2-5). As synthesized by ribosomes, proteins are inherently asymmetric. Thus, they must acquire multiple surface patches that selectively associate to generate the different symmetry elements needed to form higher-order architectures(1,6)-a daunting task for protein design. Here we address this problem using an inorganic chemical approach, whereby multiple modes of protein-protein interactions and symmetry are simultaneously achieved by selective, '  one-pot'  coordination of soft and hard metal ions. We show that a monomeric protein (protomer) appropriately modified with biologically inspired hydroxamate groups and zinc-binding motifs assembles through concurrent Fe3+ and Zn2+ coordination into discrete dodecameric and hexameric cages. Our cages closely resemble natural polyhedral protein architectures(7,8) and are, to our knowledge, unique among designed systems(9-13) in that they possess tightly packed shells devoid of large apertures. At the same time, they can assemble and disassemble in response to diverse stimuli, owing to their heterobimetallic construction on minimal interprotein-bonding footprints. With stoichiometries ranging from [2 Fe:9 Zn:6 protomers] to [8 Fe:21 Zn:12 protomers], these protein cages represent some of the compositionally most complex protein assemblies-or inorganic coordination complexes-obtained by design.


An inorganic chemical approach to biomolecular design is used to generate '  cages'  that can simultaneously promote symmetry and multiple modes of protein interactions.


  
Shifts in priming partly explain impacts of long-term nitrogen input in different chemical forms on soil organic carbon storage 期刊论文
GLOBAL CHANGE BIOLOGY, 2018, 24 (9) : 4160-4172
作者:  Song, Minghua;  Guo, Yu;  Yu, Feihai;  Zhang, Xianzhou;  Cao, Guangmin;  Cornelissen, Johannes H. C.
收藏  |  浏览/下载:10/0  |  提交时间:2019/04/09
alpine meadow  functional groups  nitrogen chemical form  priming effect  soil microbes  soil organic carbon  Tibetan Plateau