GSTDTAP

浏览/检索结果: 共23条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Structure of the human metapneumovirus polymerase phosphoprotein complex 期刊论文
NATURE, 2020, 577 (7789) : 275-+
作者:  Pan, Junhua;  Qian, Xinlei;  Lattmann, Simon;  El Sahili, Abbas;  Yeo, Tiong Han;  Jia, Huan;  Cressey, Tessa;  Ludeke, Barbara;  Noton, Sarah;  Kalocsay, Marian;  Fearns, Rachel;  Lescar, Julien
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) cause severe respiratory diseases in infants and elderly adults(1). No vaccine or effective antiviral therapy currently exists to control RSV or HMPV infections. During viral genome replication and transcription, the tetrameric phosphoprotein P serves as a crucial adaptor between the ribonucleoprotein template and the L protein, which has RNA-dependent RNA polymerase (RdRp), GDP polyribonucleotidyltransferase and cap-specific methyltransferase activities(2,3). How P interacts with L and mediates the association with the free form of N and with the ribonucleoprotein is not clear for HMPV or other major human pathogens, including the viruses that cause measles, Ebola and rabies. Here we report a cryo-electron microscopy reconstruction that shows the ring-shaped structure of the polymerase and capping domains of HMPV-L bound to a tetramer of P. The connector and methyltransferase domains of L are mobile with respect to the core. The putative priming loop that is important for the initiation of RNA synthesis is fully retracted, which leaves space in the active-site cavity for RNA elongation. P interacts extensively with the N-terminal region of L, burying more than 4,016 angstrom(2) of the molecular surface area in the interface. Two of the four helices that form the coiled-coil tetramerization domain of P, and long C-terminal extensions projecting from these two helices, wrap around the L protein in a manner similar to tentacles. The structural versatility of the four P protomers-which are largely disordered in their free state-demonstrates an example of a '  folding-upon-partner-binding'  mechanism for carrying out P adaptor functions. The structure shows that P has the potential to modulate multiple functions of L and these results should accelerate the design of specific antiviral drugs.


  
Structure of nevanimibe-bound tetrameric human ACAT1 期刊论文
NATURE, 2020, 581 (7808) : 339-U214
作者:  Ma, Xiyu;  Claus, Lucas A. N.;  Leslie, Michelle E.;  Tao, Kai;  Wu, Zhiping;  Liu, Jun;  Yu, Xiao;  Li, Bo;  Zhou, Jinggeng;  Savatin, Daniel V.;  Peng, Junmin;  Tyler, Brett M.;  Heese, Antje;  Russinova, Eugenia;  He, Ping;  Shan, Libo
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/03

The structure of human ACAT1 in complex with the inhibitor nevanimibe is resolved by cryo-electron microscopy.


Cholesterol is an essential component of mammalian cell membranes, constituting up to 50% of plasma membrane lipids. By contrast, it accounts for only 5% of lipids in the endoplasmic reticulum (ER)(1). The ER enzyme sterol O-acyltransferase 1 (also named acyl-coenzyme A:cholesterol acyltransferase, ACAT1) transfers a long-chain fatty acid to cholesterol to form cholesteryl esters that coalesce into cytosolic lipid droplets. Under conditions of cholesterol overload, ACAT1 maintains the low cholesterol concentration of the ER and thereby has an essential role in cholesterol homeostasis(2,3). ACAT1 has also been implicated in Alzheimer'  s disease(4), atherosclerosis(5) and cancers(6). Here we report a cryo-electron microscopy structure of human ACAT1 in complex with nevanimibe(7), an inhibitor that is in clinical trials for the treatment of congenital adrenal hyperplasia. The ACAT1 holoenzyme is a tetramer that consists of two homodimers. Each monomer contains nine transmembrane helices (TMs), six of which (TM4-TM9) form a cavity that accommodates nevanimibe and an endogenous acyl-coenzyme A. This cavity also contains a histidine that has previously been identified as essential for catalytic activity(8). Our structural data and biochemical analyses provide a physical model to explain the process of cholesterol esterification, as well as details of the interaction between nevanimibe and ACAT1, which may help to accelerate the development of ACAT1 inhibitors to treat related diseases.


  
Exploring dynamical phase transitions with cold atoms in an optical cavity 期刊论文
NATURE, 2020, 580 (7805) : 602-+
作者:  Halbach, Rebecca;  Miesen, Pascal;  Joosten, Joep;  Taskopru, Ezgi;  Rondeel, Inge;  Pennings, Bas;  Vogels, Chantal B. F.;  Merkling, Sarah H.;  Koenraadt, Constantianus J.;  Lambrechts, Louis;  van Rij, Ronald P.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Interactions between light and an ensemble of strontium atoms in an optical cavity can serve as a testbed for studying dynamical phase transitions, which are currently not well understood.


Interactions between atoms and light in optical cavities provide a means of investigating collective (many-body) quantum physics in controlled environments. Such ensembles of atoms in cavities have been proposed for studying collective quantum spin models, where the atomic internal levels mimic a spin degree of freedom and interact through long-range interactions tunable by changing the cavity parameters(1-4). Non-classical steady-state phases arising from the interplay between atom-light interactions and dissipation of light from the cavity have previously been investigated(5-11). These systems also offer the opportunity to study dynamical phases of matter that are precluded from existence at equilibrium but can be stabilized by driving a system out of equilibrium(12-16), as demonstrated by recent experiments(17-22). These phases can also display universal behaviours akin to standard equilibrium phase transitions(8,23,24). Here, we use an ensemble of about a million strontium-88 atoms in an optical cavity to simulate a collective Lipkin-Meshkov-Glick model(25,26), an iconic model in quantum magnetism, and report the observation of distinct dynamical phases of matter in this system. Our system allows us to probe the dependence of dynamical phase transitions on system size, initial state and other parameters. These observations can be linked to similar dynamical phases in related systems, including the Josephson effect in superfluid helium(27), or coupled atomic(28) and solid-state polariton(29) condensates. The system itself offers potential for generation of metrologically useful entangled states in optical transitions, which could permit quantum enhancement in state-of-the-art atomic clocks(30,31).


  
Structure and catalytic mechanism of a human triacylglycerol-synthesis enzyme 期刊论文
NATURE, 2020, 581 (7808) : 323-+
作者:  Nikoo, Mohammad Samizadeh;  Jafari, Armin;  Perera, Nirmana;  Zhu, Minghua;  Santoruvo, Giovanni;  Matioli, Elison
收藏  |  浏览/下载:20/0  |  提交时间:2020/07/03

Triacylglycerols store metabolic energy in organisms and have industrial uses as foods and fuels. Excessive accumulation of triacylglycerols in humans causes obesity and is associated with metabolic diseases(1). Triacylglycerol synthesis is catalysed by acyl-CoA diacylglycerol acyltransferase (DGAT) enzymes(2-4), the structures and catalytic mechanisms of which remain unknown. Here we determined the structure of dimeric human DGAT1, a member of the membrane-bound O-acyltransferase (MBOAT) family, by cryo-electron microscopy at approximately 3.0 angstrom resolution. DGAT1 forms a homodimer through N-terminal segments and a hydrophobic interface, with putative active sites within the membrane region. A structure obtained with oleoyl-CoA substrate resolved at approximately 3.2 angstrom shows that the CoA moiety binds DGAT1 on the cytosolic side and the acyl group lies deep within a hydrophobic channel, positioning the acyl-CoA thioester bond near an invariant catalytic histidine residue. The reaction centre is located inside a large cavity, which opens laterally to the membrane bilayer, providing lipid access to the active site. A lipid-like density-possibly representing an acyl-acceptor molecule-is located within the reaction centre, orthogonal to acyl-CoA. Insights provided by the DGAT1 structures, together with mutagenesis and functional studies, provide the basis for a model of the catalysis of triacylglycerol synthesis by DGAT.


Cryo-electron microscopy structures and functional and mutagenesis studies provide insights into the catalysis of triacylglycerol synthesis by human acyl-CoA diacylglycerol acyltransferase at its intramembrane active site.


  
Control and single-shot readout of an ion embedded in a nanophotonic cavity 期刊论文
NATURE, 2020, 580 (7802) : 201-+
作者:  Rollie, Clare;  Chevallereau, Anne;  Watson, Bridget N. J.;  Chyou, Te-yuan;  Fradet, Olivier;  McLeod, Isobel;  Fineran, Peter C.;  Brown, Chris M.;  Gandon, Sylvain;  Westra, Edze R.
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

Distributing entanglement over long distances using optical networks is an intriguing macroscopic quantum phenomenon with applications in quantum systems for advanced computing and secure communication(1,2). Building quantum networks requires scalable quantum light-matter interfaces(1) based on atoms(3), ions(4) or other optically addressable qubits. Solid-state emitters(5), such as quantum dots and defects in diamond or silicon carbide(6-10), have emerged as promising candidates for such interfaces. So far, it has not been possible to scale up these systems, motivating the development of alternative platforms. A central challenge is identifying emitters that exhibit coherent optical and spin transitions while coupled to photonic cavities that enhance the light-matter interaction and channel emission into optical fibres. Rare-earth ions in crystals are known to have highly coherent 4f-4f optical and spin transitions suited to quantum storage and transduction(11-15), but only recently have single rare-earth ions been isolated(16,17) and coupled to nanocavities(18,19). The crucial next steps towards using single rare-earth ions for quantum networks are realizing long spin coherence and single-shot readout in photonic resonators. Here we demonstrate spin initialization, coherent optical and spin manipulation, and high-fidelity single-shot optical readout of the hyperfine spin state of single Yb-171(3+) ions coupled to a nanophotonic cavity fabricated in an yttrium orthovanadate host crystal. These ions have optical and spin transitions that are first-order insensitive to magnetic field fluctuations, enabling optical linewidths of less than one megahertz and spin coherence times exceeding thirty milliseconds for cavity-coupled ions, even at temperatures greater than one kelvin. The cavity-enhanced optical emission rate facilitates efficient spin initialization and single-shot readout with conditional fidelity greater than 95 per cent. These results showcase a solid-state platform based on single coherent rare-earth ions for the future quantum internet.


Single ytterbium ion qubits in nanophotonic cavities have long coherence times and can be optically read out in a single shot, establishing them as excellent candidates for optical quantum networks.


  
The ABC exporter IrtAB imports and reduces mycobacterial siderophores 期刊论文
NATURE, 2020, 580 (7803) : 413-+
作者:  Fessler, Evelyn;  Eckl, Eva-Maria;  Schmitt, Sabine;  Mancilla, Igor Alves;  Meyer-Bender, Matthias F.;  Hanf, Monika;  Philippou-Massier, Julia;  Krebs, Stefan;  Zischka, Hans;  Jae, Lucas T.
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Intracellular replication of the deadly pathogen Mycobacterium tuberculosis relies on the production of small organic molecules called siderophores that scavenge iron from host proteins(1). M. tuberculosis produces two classes of siderophore, lipid-bound mycobactin and water-soluble carboxymycobactin(2,3). Functional studies have revealed that iron-loaded carboxymycobactin is imported into the cytoplasm by the ATP binding cassette (ABC) transporter IrtAB(4), which features an additional cytoplasmic siderophore interaction domain(5). However, the predicted ABC exporter fold of IrtAB is seemingly contradictory to its import function. Here we show that membrane-reconstituted IrtAB is sufficient to import mycobactins, which are then reduced by the siderophore interaction domain to facilitate iron release. Structure determination by X-ray crystallography and cryo-electron microscopy not only confirms that IrtAB has an ABC exporter fold, but also reveals structural peculiarities at the transmembrane region of IrtAB that result in a partially collapsed inward-facing substrate-binding cavity. The siderophore interaction domain is positioned in close proximity to the inner membrane leaflet, enabling the reduction of membrane-inserted mycobactin. Enzymatic ATPase activity and in vivo growth assays show that IrtAB has a preference for mycobactin over carboxymycobactin as its substrate. Our study provides insights into an unusual ABC exporter that evolved as highly specialized siderophore-import machinery in mycobacteria.


  
Ice front blocking of ocean heat transport to an Antarctic ice shelf 期刊论文
NATURE, 2020, 578 (7796) : 568-+
作者:  Alexandrov, Ludmil B.;  Kim, Jaegil;  Haradhvala, Nicholas J.;  Huang, Mi Ni;  Ng, Alvin Wei Tian;  Wu, Yang;  Boot, Arnoud;  Covington, Kyle R.;  Gordenin, Dmitry A.;  Bergstrom, Erik N.;  Islam, S. M. Ashiqul;  Lopez-Bigas, Nuria;  Klimczak, Leszek J.;  McPherson, John R.;  Morganella, Sandro;  Sabarinathan, Radhakrishnan;  Wheeler, David A.;  Mustonen, Ville;  Getz, Gad;  Rozen, Steven G.;  Stratton, Michael R.
收藏  |  浏览/下载:13/0  |  提交时间:2020/05/13

The front of the Getz Ice Shelf in West Antarctica creates an abrupt topographic step that deflects ocean currents, suppressing 70% of the heat delivery to the ice sheet.


Mass loss from the Antarctic Ice Sheet to the ocean has increased in recent decades, largely because the thinning of its floating ice shelves has allowed the outflow of grounded ice to accelerate(1,2). Enhanced basal melting of the ice shelves is thought to be the ultimate driver of change(2,3), motivating a recent focus on the processes that control ocean heat transport onto and across the seabed of the Antarctic continental shelf towards the ice(4-6). However, the shoreward heat flux typically far exceeds that required to match observed melt rates(2,7,8), suggesting that other critical controls exist. Here we show that the depth-independent (barotropic) component of the heat flow towards an ice shelf is blocked by the marked step shape of the ice front, and that only the depth-varying (baroclinic) component, which is typically much smaller, can enter the sub-ice cavity. Our results arise from direct observations of the Getz Ice Shelf system and laboratory experiments on a rotating platform. A similar blocking of the barotropic component may occur in other areas with comparable ice-bathymetry configurations, which may explain why changes in the density structure of the water column have been found to be a better indicator of basal melt rate variability than the heat transported onto the continental shelf(9). Representing the step topography of the ice front accurately in models is thus important for simulating ocean heat fluxes and induced melt rates.


  
Electrically pumped topological laser with valley edge modes 期刊论文
NATURE, 2020, 578 (7794) : 246-+
作者:  Erickson, Peter;  van Asselt, Harro;  Koplow, Doug;  Lazarus, Michael;  Newell, Peter;  Oreskes, Naomi;  Supran, Geoffrey
收藏  |  浏览/下载:46/0  |  提交时间:2020/07/03

Quantum cascade lasers are compact, electrically pumped light sources in the technologically important mid-infrared and terahertz region of the electromagnetic spectrum(1,2). Recently, the concept of topology(3) has been expanded from condensed matter physics into photonics(4), giving rise to a new type of lasing(5-8) using topologically protected photonic modes that can efficiently bypass corners and defects(4). Previous demonstrations of topological lasers have required an external laser source for optical pumping and have operated in the conventional optical frequency regime(5-8). Here we demonstrate an electrically pumped terahertz quantum cascade laser based on topologically protected valley edge states(9-11). Unlike topological lasers that rely on large-scale features to impart topological protection, our compact design makes use of the valley degree of freedom in photonic crystals(10,11), analogous to two-dimensional gapped valleytronic materials(12). Lasing with regularly spaced emission peaks occurs in a sharp-cornered triangular cavity, even if perturbations are introduced into the underlying structure, owing to the existence of topologically protected valley edge states that circulate around the cavity without experiencing localization. We probe the properties of the topological lasing modes by adding different outcouplers to the topological cavity. The laser based on valley edge states may open routes to the practical use of topological protection in electrically driven laser sources.


  
A mycobacterial ABC transporter mediates the uptake of hydrophilic compounds 期刊论文
NATURE, 2020, 580 (7803) : 409-+
作者:  Al-Shayeb, Basem;  Sachdeva, Rohan;  Chen, Lin-Xing;  Ward, Fred;  Munk, Patrick;  Devoto, Audra;  Castelle, Cindy J.;  Olm, Matthew R.;  Bouma-Gregson, Keith;  Amano, Yuki;  He, Christine;  Meheust, Raphael;  Brooks, Brandon;  Thomas, Alex;  Levy, Adi;  Matheus-Carnevali, Paula;  Sun, Christine;  Goltsman, Daniela S. A.;  Borton, Mikayla A.;  Sharrar, Allison;  Jaffe, Alexander L.;  Nelson, Tara C.;  Kantor, Rose;  Keren, Ray;  Lane, Katherine R.;  Farag, Ibrahim F.;  Lei, Shufei;  Finstad, Kari;  Amundson, Ronald;  Anantharaman, Karthik;  Zhou, Jinglie;  Probst, Alexander J.;  Power, Mary E.;  Tringe, Susannah G.;  Li, Wen-Jun;  Wrighton, Kelly;  Harrison, Sue;  Morowitz, Michael;  Relman, David A.;  Doudna, Jennifer A.;  Lehours, Anne-Catherine;  Warren, Lesley;  Cate, Jamie H. D.;  Santini, Joanne M.;  Banfield, Jillian F.
收藏  |  浏览/下载:39/0  |  提交时间:2020/07/03

Mycobacterium tuberculosis (Mtb) is an obligate human pathogen and the causative agent of tuberculosis(1-3). Although Mtb can synthesize vitamin B-12 (cobalamin) de novo, uptake of cobalamin has been linked to pathogenesis of tuberculosis2. Mtb does not encode any characterized cobalamin transporter(4-6)  however, the gene rv1819c was found to be essential for uptake of cobalamin(1). This result is difficult to reconcile with the original annotation of Rv1819c as a protein implicated in the transport of antimicrobial peptides such as bleomycin(7). In addition, uptake of cobalamin seems inconsistent with the amino acid sequence, which suggests that Rv1819c has a bacterial ATP-binding cassette (ABC)-exporter fold1. Here, we present structures of Rv1819c, which reveal that the protein indeed contains the ABC-exporter fold, as well as a large water-filled cavity of about 7,700 angstrom(3), which enables the protein to transport the unrelated hydrophilic compounds bleomycin and cobalamin. On the basis of these structures, we propose that Rv1819c is a multi-solute transporter for hydrophilic molecules, analogous to the multidrug exporters of the ABC transporter family, which pump out structurally diverse hydrophobic compounds from cells(8-11).


  
Entanglement of two quantum memories via fibres over dozens of kilometres 期刊论文
NATURE, 2020, 578 (7794) : 240-+
作者:  Cabrita, Rita;  Lauss, Martin;  Sanna, Adriana;  Donia, Marco;  Larsen, Mathilde Skaarup;  Mitra, Shamik;  Johansson, Iva;  Phung, Bengt;  Harbst, Katja;  Vallon-Christersson, Johan;  van Schoiack, Alison;  Loevgren, Kristina;  Warren, Sarah;  Jirstroem, Karin;  Olsson, Hakan;  Pietras, Kristian;  Ingvar, Christian;  Isaksson, Karolin;  Schadendorf, Dirk;  Schmidt, Henrik;  Bastholt, Lars;  Carneiro, Ana;  Wargo, Jennifer A.;  Svane, Inge Marie;  Jonsson, Goran
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/03

A quantum internet that connects remote quantum processors(1,2) should enable a number of revolutionary applications such as distributed quantum computing. Its realization will rely on entanglement of remote quantum memories over long distances. Despite enormous progress(3-12), at present the maximal physical separation achieved between two nodes is 1.3 kilometres(10), and challenges for longer distances remain. Here we demonstrate entanglement of two atomic ensembles in one laboratory via photon transmission through city-scale optical fibres. The atomic ensembles function as quantum memories that store quantum states. We use cavity enhancement to efficiently create atom-photon entanglement(13-15) and we use quantum frequency conversion(16) to shift the atomic wavelength to telecommunications wavelengths. We realize entanglement over 22 kilometres of field-deployed fibres via two-photon interference(17,18) and entanglement over 50 kilometres of coiled fibres via single-photon interference(19). Our experiment could be extended to nodes physically separated by similar distances, which would thus form a functional segment of the atomic quantum network, paving the way towards establishing atomic entanglement over many nodes and over much longer distances.