GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
欧美研究证实根际正激发效应加速多年冻土碳释放 快报文章
资源环境快报,2025年第8期
作者:  裴惠娟
Microsoft Word(31Kb)  |  收藏  |  浏览/下载:448/0  |  提交时间:2025/04/30
Rhizosphere Priming  Carbon Release  Permafrost Soil  
到2100年野火和退化将导致北部泥炭地碳汇能力降低65% 快报文章
气候变化快报,2023年第09期
作者:  董利苹
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:365/0  |  提交时间:2023/05/05
Wildfire  Degradation  Northern Peatland  Carbon Release  
Redox-switchable carboranes for uranium capture and release 期刊论文
NATURE, 2020, 577 (7792) : 652-+
作者:  Marques, Joao C.;  Li, Meng;  Schaak, Diane;  Robson, Drew N.;  Li, Jennifer M.
收藏  |  浏览/下载:44/0  |  提交时间:2020/07/03

The uranyl ion (UO22+  U(vi) oxidation state) is the most common form of uranium found in terrestrial and aquatic environments and is a central component in nuclear fuel processing and waste remediation efforts. Uranyl capture from either seawater or nuclear waste has been well studied and typically relies on extremely strong chelating/binding affinities to UO22+ using chelating polymers(1,2), porous inorganic(3-5) or carbon-based(6,7) materials, as well as homogeneous(8) compounds. By contrast, the controlled release of uranyl after capture is less established and can be difficult, expensive or destructive to the initial material(2,9). Here we show how harnessing the redox-switchable chelating and donating properties of an ortho-substituted closo-carborane (1,2-(Ph2PO)(2)-1,2-C2B10H10) cluster molecule can lead to the controlled chemical or electrochemical capture and release of UO22+ in monophasic (organic) or biphasic (organic/aqueous) model solvent systems. This is achieved by taking advantage of the increase in the ligand bite angle when the closo-carborane is reduced to the nido-carborane, resulting in C-C bond rupture and cage opening. The use of electrochemical methods for uranyl capture and release may complement existing sorbent and processing systems.


Redox-switchable chelation is demonstrated for a carborane cluster molecule, leading to controlled chemical or electrochemical capture and release of uranyl in monophasic or biphasic model solvent systems.