GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
NOAA利用人工智能优化天气观测数据 快报文章
资源环境快报,2025年第4期
作者:  刘燕飞
Microsoft Word(19Kb)  |  收藏  |  浏览/下载:462/1  |  提交时间:2025/02/28
Cooperative Research And Development Agreement (CRADA)  Observational Data  Artificial Intelligence (AI)  Open-source Data Repository  Weather Forecasting  
美国国家科学基金会宣布新增七个国家人工智能研究所 快报文章
资源环境快报,2023年第09期
作者:  李恒吉
Microsoft Word(24Kb)  |  收藏  |  浏览/下载:653/0  |  提交时间:2023/05/17
NSF  AI  Institute of Artificial Intelligence  
International evaluation of an AI system for breast cancer screening 期刊论文
NATURE, 2020, 577 (7788) : 89-+
作者:  McKinney, Scott Mayer;  Sieniek, Marcin;  Godbole, Varun;  Godwin, Jonathan;  Antropova, Natasha;  Ashrafian, Hutan;  Back, Trevor;  Chesus, Mary;  Corrado, Greg C.;  Darzi, Ara;  Etemadi, Mozziyar;  Garcia-Vicente, Florencia;  Gilbert, Fiona J.;  Halling-Brown, Mark;  Hassabis, Demis;  Jansen, Sunny;  Karthikesalingam, Alan;  Kelly, Christopher J.;  King, Dominic;  Ledsam, Joseph R.;  Melnick, David;  Mostofi, Hormuz;  Peng, Lily;  Reicher, Joshua Jay;  Romera-Paredes, Bernardino;  Sidebottom, Richard;  Suleyman, Mustafa;  Tse, Daniel;  Young, Kenneth C.;  De Fauw, Jeffrey;  Shetty, Shravya
收藏  |  浏览/下载:66/0  |  提交时间:2020/07/03

Screening mammography aims to identify breast cancer at earlier stages of the disease, when treatment can be more successful(1). Despite the existence of screening programmes worldwide, the interpretation of mammograms is affected by high rates of false positives and false negatives(2). Here we present an artificial intelligence (AI) system that is capable of surpassing human experts in breast cancer prediction. To assess its performance in the clinical setting, we curated a large representative dataset from the UK and a large enriched dataset from the USA. We show an absolute reduction of 5.7% and 1.2% (USA and UK) in false positives and 9.4% and 2.7% in false negatives. We provide evidence of the ability of the system to generalize from the UK to the USA. In an independent study of six radiologists, the AI system outperformed all of the human readers: the area under the receiver operating characteristic curve (AUC-ROC) for the AI system was greater than the AUC-ROC for the average radiologist by an absolute margin of 11.5%. We ran a simulation in which the AI system participated in the double-reading process that is used in the UK, and found that the AI system maintained non-inferior performance and reduced the workload of the second reader by 88%. This robust assessment of the AI system paves the way for clinical trials to improve the accuracy and efficiency of breast cancer screening.


  
A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists 期刊论文
WATER RESOURCES RESEARCH, 2018, 54 (11) : 8558-8593
作者:  Shen, Chaopeng
收藏  |  浏览/下载:18/0  |  提交时间:2019/04/09
deep learning  artificial intelligence  AI neuroscience  data mining  transformative