GSTDTAP

浏览/检索结果: 共13条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Mass balance of the Greenland Ice Sheet from 1992 to 2018 期刊论文
NATURE, 2020, 579 (7798) : 233-+
作者:  Scudellari, Megan
收藏  |  浏览/下载:11/0  |  提交时间:2020/04/16

The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades(1,2), and it is expected to continue to be so(3). Although increases in glacier flow(4-6) and surface melting(7-9) have been driven by oceanic(10-12) and atmospheric(13,14) warming, the magnitude and trajectory of the ice sheet'  s mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet'  s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 +/- 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 +/- 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 +/- 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 +/- 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 +/- 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 +/- 37 billion tonnes per year in the 1990s to 87 +/- 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 +/- 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions(15) and ocean temperatures fell at the terminus of Jakobshavn Isbr AE(16). Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario(17), which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate.


  
Measuring Lava Flows With ArcticDEM: Application to the 2012-2013 Eruption of Tolbachik, Kamchatka 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (24)
作者:  Dai, Chunli;  Howat, Ian M.
收藏  |  浏览/下载:4/0  |  提交时间:2019/04/09
Kamchatka  2012-2013 Tolbachik eruption  satellite photogrammetry  lava flows  magma supply  eruption forecast  
Global meteorological influences on the record UK rainfall of winter 2013-14 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2017, 12 (7)
作者:  Knight, Jeff R.;  Maidens, Anna;  Watson, Peter A. G.;  Andrews, Martin;  Belcher, Stephen;  Brunet, Gilbert;  Fereday, David;  Folland, Chris K.;  Scaife, Adam A.;  Slingo, Julia
收藏  |  浏览/下载:9/0  |  提交时间:2019/04/09
winter 2013-14  floods  UK rainfall  atmospheric circulation  Rossby waves  climate change  
Investigation of the 2013 Alberta flood from weather and climate perspectives 期刊论文
CLIMATE DYNAMICS, 2017, 48
作者:  Teufel, Bernardo;  Diro, G. T.;  Whan, K.;  Milrad, S. M.;  Jeong, D. I.;  Ganji, A.;  Huziy, O.;  Winger, K.;  Gyakum, J. R.;  de Elia, R.;  Zwiers, F. W.;  Sushama, L.
收藏  |  浏览/下载:4/0  |  提交时间:2019/04/09
2013 Alberta flood  Land-atmosphere  Orographic forcing  Hydrology  Climate change  Event attribution  
Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations 科技报告
来源:US Department of Energy (DOE). 出版年: 2014
作者:  Mizell, Steve A;  Nikolich, George;  Shadel, Craig;  McCurdy, Greg;  Etyemezian, Vicken;  Miller, Julianne J
收藏  |  浏览/下载:9/0  |  提交时间:2019/04/05
In 1963  the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC])  implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I  II  and III. This report documents observations made during on-going monitoring of radiological  meteorological  and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing)  (2) only naturally occurring radionuclides were identified in the gamma spectral analyses  (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area  and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However  differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.  
Clean Cities 2013 Annual Metrics Report 科技报告
来源:US Department of Energy (DOE). 出版年: 2014
作者:  Johnson, C.;  Singer, M.
收藏  |  浏览/下载:2/0  |  提交时间:2019/04/05
CLEAN CITIES  METRICS  ANNUAL REPORT  2013 DATA  Transportation  
West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2013 科技报告
来源:US Department of Energy (DOE). 出版年: 2014
作者:  Rendall, John D.;  Steiner, Alison F.;  Pendl, Michael P.
收藏  |  浏览/下载:6/0  |  提交时间:2019/04/05
West Valley Demonstration Project  WVDP  Annual Site Environmental Report  ASER  Calendar Year 2013  CH2M HILL • B&W West Valley  LLC  DE-EM0001529  Public Health and Safety and the Environment Are Protected  Airborne and Waterborne Releases to the MEOSI  Climate Change  DOE/NYSERDA Consent Decree  Dose Assessment  Dose to Biota  Drinking Water  Environmental Characterization Support Services  Environmental Compliance  Environmental Management System: EMS  Environmental Monitoring  Groundwater Protection Program  High-Level Waste (HLW) Canister Interim Storage System  HLW canister storage pad  National Emissions Standards for Hazardous Air Pollutants  NESHAP  National Environmental Policy Act  NEPA  North Plateau Full-Scale Permeable Treatment Wall  PTW  Nuclear Regulatory Commission (NRC)-Licensed Disposal Area  NDA  Performance Indicators  Phase 1 Decommissioning and Facility Disposition Contract  Phase 1 Studies  Quality Assurance  Record of Decision  ROD  Resource Conservation and Recovery Act  RCRA  Safety Success  Site Sustainability Plan  SSP  State Pollutant Discharge Elimination System (SPDES) Permit Noncompliance  SPDES  Tank and Vault Drying System  T&VDS  Vertical Storage Casks  VSC  Waste Minimization and Pollution Prevention  Waste Tank Farm  WTF  Waste-Incidental-to-Reprocessing  WIR  
Nevada National Security Site Environmental Report 2013 Attachment A: Site Description 科技报告
来源:US Department of Energy (DOE). 出版年: 2014
作者:  Wills, C.
收藏  |  浏览/下载:3/0  |  提交时间:2019/04/05
NNSS  environmental report  NNSSER  Nevada National Security Site  2013  
Nevada National Security Site Environmental Report 2013 科技报告
来源:US Department of Energy (DOE). 出版年: 2014
作者:  Wills, C.
收藏  |  浏览/下载:5/0  |  提交时间:2019/04/05
NNSS  environmental report  NNSSER  Nevada National Security Site  2013  
A Historical Evaluation of the U15 Complex, Nevada National Security Site, Nye County, Nevada 科技报告
来源:US Department of Energy (DOE). 出版年: 2014
作者:  Drollinger, Harold;  Holz, Barbara A;  Bullard, Thomas F;  Goldenberg, Nancy G;  Ashbaugh, Laurence J;  Griffin, Wayne R
收藏  |  浏览/下载:8/0  |  提交时间:2019/04/05
This report presents a historical evaluation of the U15 Complex on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy  National Nuclear Security Administration Nevada Field Office and the U.S. Department of Defense  Defense Threat Reduction Agency. Three underground nuclear tests and two underground nuclear fuel storage experiments were conducted at the complex. The nuclear tests were Hard Hat in 1962  Tiny Tot in 1965  and Pile Driver in 1966. The Hard Hat and Pile Driver nuclear tests involved different types of experiment sections in test drifts at various distances from the explosion in order to determine which sections could best survive in order to design underground command centers. The Tiny Tot nuclear test involved an underground cavity in which the nuclear test was executed. It also provided data in designing underground structures and facilities to withstand a nuclear attack. The underground nuclear fuel storage experiments were Heater Test 1 from 1977 to 1978 and Spent Fuel Test - Climax from 1978 to 1985. Heater Test 1 was used to design the later Spent Fuel Test - Climax experiment. The latter experiment was a model of a larger underground storage facility and primarily involved recording the conditions of the spent fuel and the surrounding granite medium. Fieldwork was performed intermittently in the summers of 2011 and 2013  totaling 17 days. Access to the underground tunnel complex is sealed and unavailable. Restricted to the surface  four buildings  four structures  and 92 features associated with nuclear testing and fuel storage experiment activities at the U15 Complex have been recorded. Most of these are along the west side of the complex and next to the primary access road and are characteristic of an industrial mining site  albeit one with scientific interests. The geomorphological fieldwork was conducted over three days in the summer of 2011. It was discovered that major modifications to the terrain have resulted from four principal activities. These are road construction and maintenance  mining activities related to development of the tunnel complex  site preparation for activities related to the tests and experiments  and construction of drill pads and retention ponds. Six large trenches for exploring across the Boundary geologic fault are also present. The U15 Complex  designated historic district 143 and site 26NY15177  is eligible to the National Register of Historic Places under Criteria A  C  and D of 36 CFR Part 60.4. As a historic district and archaeological site eligible to the National Register of Historic Places  the Desert Research Institute recommends that the area defined for the U15 Complex  historic district 143 and site 26NY15117  be left in place in its current condition. The U15 Complex should also be included in the NNSS cultural resources monitoring program and monitored for disturbances or alterations.