GSTDTAP

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
Drought alters the carbon footprint of trees in soils—tracking the spatio‐temporal fate of 13C‐labelled assimilates in the soil of an old‐growth pine forest 期刊论文
Global Change Biology, 2021
作者:  Decai Gao;  Jobin Joseph;  Roland A Werner;  Ivano Brunner;  Alois Zü;  rcher;  Christian Hug;  Ao Wang;  Chunhong Zhao;  Edith Bai;  Katrin Meusburger;  Arthur Gessler;  Frank Hagedorn
收藏  |  浏览/下载:10/0  |  提交时间:2021/03/29
Stability of H3O at extreme conditions and implications for the magnetic fields of Uranus and Neptune 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (11) : 5638-5643
作者:  Huang, Peihao;  Liu, Hanyu;  Lv, Jian;  Li, Quan;  Long, Chunhong;  Wang, Yanchao;  Chen, Changfeng;  Hemley, Russell J.;  Ma, Yanming
收藏  |  浏览/下载:9/0  |  提交时间:2020/05/13
planetary science  high-pressure physics  magnetic fields  water  
Integrating genomic features for non-invasive early lung cancer detection 期刊论文
NATURE, 2020, 580 (7802) : 245-+
作者:  Wang, Qinyang;  Wang, Yupeng;  Ding, Jingjin;  Wang, Chunhong;  Zhou, Xuehan;  Gao, Wenqing;  Huang, Huanwei;  Shao, Feng;  Liu, Zhibo
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Circulating tumour DNA in blood is analysed to identify genomic features that distinguish early-stage lung cancer patients from risk-matched controls, and these are integrated into a machine-learning method for blood-based lung cancer screening.


Radiologic screening of high-risk adults reduces lung-cancer-related mortality(1,2)  however, a small minority of eligible individuals undergo such screening in the United States(3,4). The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer personalized profiling by deep sequencing (CAPP-Seq)(5), a method for the analysis of circulating tumour DNA (ctDNA), to better facilitate screening applications. We show that, although levels are very low in early-stage lung cancers, ctDNA is present prior to treatment in most patients and its presence is strongly prognostic. We also find that the majority of somatic mutations in the cell-free DNA (cfDNA) of patients with lung cancer and of risk-matched controls reflect clonal haematopoiesis and are non-recurrent. Compared with tumour-derived mutations, clonal haematopoiesis mutations occur on longer cfDNA fragments and lack mutational signatures that are associated with tobacco smoking. Integrating these findings with other molecular features, we develop and prospectively validate a machine-learning method termed '  lung cancer likelihood in plasma'  (Lung-CLiP), which can robustly discriminate early-stage lung cancer patients from risk-matched controls. This approach achieves performance similar to that of tumour-informed ctDNA detection and enables tuning of assay specificity in order to facilitate distinct clinical applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight the importance of risk-matching cases and controls in cfDNA-based screening studies.


  
Collisional cooling of ultracold molecules 期刊论文
NATURE, 2020, 580 (7802) : 197-+
作者:  Wang, Qinyang;  Wang, Yupeng;  Ding, Jingjin;  Wang, Chunhong;  Zhou, Xuehan;  Gao, Wenqing;  Huang, Huanwei;  Shao, Feng;  Liu, Zhibo
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Since the original work on Bose-Einstein condensation(1,2), the use of quantum degenerate gases of atoms has enabled the quantum emulation of important systems in condensed matter and nuclear physics, as well as the study of many-body states that have no analogue in other fields of physics(3). Ultracold molecules in the micro- and nanokelvin regimes are expected to bring powerful capabilities to quantum emulation(4) and quantum computing(5), owing to their rich internal degrees of freedom compared to atoms, and to facilitate precision measurement and the study of quantum chemistry(6). Quantum gases of ultracold atoms can be created using collision-based cooling schemes such as evaporative cooling, but thermalization and collisional cooling have not yet been realized for ultracold molecules. Other techniques, such as the use of supersonic jets and cryogenic buffer gases, have reached temperatures limited to above 10 millikelvin(7,8). Here we show cooling of NaLi molecules to micro- and nanokelvin temperatures through collisions with ultracold Na atoms, with both molecules and atoms prepared in their stretched hyperfine spin states. We find a lower bound on the ratio of elastic to inelastic molecule-atom collisions that is greater than 50-large enough to support sustained collisional cooling. By employing two stages of evaporation, we increase the phase-space density of the molecules by a factor of 20, achieving temperatures as low as 220 nanokelvin. The favourable collisional properties of the Na-NaLi system could enable the creation of deeply quantum degenerate dipolar molecules and raises the possibility of using stretched spin states in the cooling of other molecules.


NaLi molecules are cooled to micro- and nanokelvin temperatures through collisions with ultracold Na atoms by using molecules and atoms in stretched hyperfine spin states and applying two evaporation stages.


  
Attributions of meteorological and emission factors to the 2015 winter severe haze pollution episodes in China's Jing-Jin-Ji area 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (4)
作者:  Liu, Tingting;  Gong, Sunling;  He, Jianjun;  Yu, Meng;  Wang, Qifeng;  Li, Huairui;  Liu, Wei;  Zhang, Jie;  Li, Lei;  Wang, Xuguan;  Li, Shuli;  Lu, Yanli;  Du, Haitao;  Wang, Yaqiang;  Zhou, Chunhong;  Liu, Hongli;  Zhao, Qichao
收藏  |  浏览/下载:7/0  |  提交时间:2019/04/09