GSTDTAP  > 地球科学
DOI10.1038/s41586-020-2140-0
Integrating genomic features for non-invasive early lung cancer detection
Wang, Qinyang1; Wang, Yupeng2,3; Ding, Jingjin3,4; Wang, Chunhong1; Zhou, Xuehan1; Gao, Wenqing3; Huang, Huanwei3; Shao, Feng2,3,5; Liu, Zhibo1,6
2020-03-11
发表期刊NATURE
ISSN0028-0836
EISSN1476-4687
出版年2020
卷号580期号:7802页码:245-+
文章类型Article
语种英语
国家USA
英文关键词

Circulating tumour DNA in blood is analysed to identify genomic features that distinguish early-stage lung cancer patients from risk-matched controls, and these are integrated into a machine-learning method for blood-based lung cancer screening.


Radiologic screening of high-risk adults reduces lung-cancer-related mortality(1,2) however, a small minority of eligible individuals undergo such screening in the United States(3,4). The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer personalized profiling by deep sequencing (CAPP-Seq)(5), a method for the analysis of circulating tumour DNA (ctDNA), to better facilitate screening applications. We show that, although levels are very low in early-stage lung cancers, ctDNA is present prior to treatment in most patients and its presence is strongly prognostic. We also find that the majority of somatic mutations in the cell-free DNA (cfDNA) of patients with lung cancer and of risk-matched controls reflect clonal haematopoiesis and are non-recurrent. Compared with tumour-derived mutations, clonal haematopoiesis mutations occur on longer cfDNA fragments and lack mutational signatures that are associated with tobacco smoking. Integrating these findings with other molecular features, we develop and prospectively validate a machine-learning method termed ' lung cancer likelihood in plasma' (Lung-CLiP), which can robustly discriminate early-stage lung cancer patients from risk-matched controls. This approach achieves performance similar to that of tumour-informed ctDNA detection and enables tuning of assay specificity in order to facilitate distinct clinical applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight the importance of risk-matching cases and controls in cfDNA-based screening studies.


领域地球科学 ; 气候变化 ; 资源环境
收录类别SCI-E
WOS记录号WOS:000521531000011
WOS关键词DNA ; PLASMA ; NUMBER
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/281521
专题地球科学
资源环境科学
气候变化
作者单位1.Peking Univ, Coll Chem & Mol Engn, Beijing Natl Lab Mol Sci Radiochem & Radiat Chem, Key Lab Fundamental Sci, Beijing, Peoples R China;
2.Chinese Acad Med Sci, Res Unit Pyroptosis & Immun, Beijing, Peoples R China;
3.Natl Inst Biol Sci, Beijing, Peoples R China;
4.Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing, Peoples R China;
5.Tsinghua Univ, Tsinghua Inst Multidisciplinary Biomed Res, Beijing, Peoples R China;
6.Peking Univ, Peking Tsinghua Ctr Life Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wang, Qinyang,Wang, Yupeng,Ding, Jingjin,et al. Integrating genomic features for non-invasive early lung cancer detection[J]. NATURE,2020,580(7802):245-+.
APA Wang, Qinyang.,Wang, Yupeng.,Ding, Jingjin.,Wang, Chunhong.,Zhou, Xuehan.,...&Liu, Zhibo.(2020).Integrating genomic features for non-invasive early lung cancer detection.NATURE,580(7802),245-+.
MLA Wang, Qinyang,et al."Integrating genomic features for non-invasive early lung cancer detection".NATURE 580.7802(2020):245-+.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Qinyang]的文章
[Wang, Yupeng]的文章
[Ding, Jingjin]的文章
百度学术
百度学术中相似的文章
[Wang, Qinyang]的文章
[Wang, Yupeng]的文章
[Ding, Jingjin]的文章
必应学术
必应学术中相似的文章
[Wang, Qinyang]的文章
[Wang, Yupeng]的文章
[Ding, Jingjin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。