GSTDTAP

浏览/检索结果: 共30条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Detection of Azoxystrobin Fungicide and Metabolite Azoxystrobin-Acid in Pregnant Women and Children, Estimation of Daily Intake, and Evaluation of Placental and Lactational Transfer in Mice 期刊论文
Environmental Health Perspectives, 2022
作者:  Wenxin Hu;  Chih-Wei Liu;  Jessica A. Jiménez;  Eric S. McCoy;  Yun-Chung Hsiao;  Weili Lin;  Stephanie M. Engel;  Kun Lu;  Mark J. Zylka
收藏  |  浏览/下载:49/0  |  提交时间:2022/03/01
Leapfrog dynamics in phage-bacteria coevolution revealed by joint analysis of cross-infection phenotypes and whole genome sequencing 期刊论文
Ecology Letters, 2022
作者:  Animesh Gupta;  Shengyun Peng;  Chung Yin Leung;  Joshua M. Borin;  Sarah ;  J. Medina;  Joshua S. Weitz;  Justin R. Meyer
收藏  |  浏览/下载:20/0  |  提交时间:2022/02/16
Utilizing a Biology-Driven Approach to Map the Exposome in Health and Disease: An Essential Investment to Drive the Next Generation of Environmental Discovery 期刊论文
Environmental Health Perspectives, 2021
作者:  Ming Kei Chung;  Stephen M. Rappaport;  Craig E. Wheelock;  Vy Kim Nguyen;  Thomas P. van der Meer;  Gary W. Miller;  Roel Vermeulen;  Chirag J. Patel
收藏  |  浏览/下载:25/0  |  提交时间:2021/08/30
Public data from three US states provide new insights into well integrity 期刊论文
Proceedings of the National Academy of Sciences, 2021
作者:  Greg Lackey;  Harihar Rajaram;  James Bolander;  Owen A. Sherwood;  Joseph N. Ryan;  Chung Yan Shih;  Grant S. Bromhal;  Robert M. Dilmore
收藏  |  浏览/下载:23/0  |  提交时间:2021/04/06
Targeting a neoantigen derived from a common TP53 mutation 期刊论文
Science, 2021
作者:  Emily Han-Chung Hsiue;  Katharine M. Wright;  Jacqueline Douglass;  Michael S. Hwang;  Brian J. Mog;  Alexander H. Pearlman;  Suman Paul;  Sarah R. DiNapoli;  Maximilian F. Konig;  Qing Wang;  Annika Schaefer;  Michelle S. Miller;  Andrew D. Skora;  P. Aitana Azurmendi;  Michael B. Murphy;  Qiang Liu;  Evangeline Watson;  Yana Li;  Drew M. Pardoll;  Chetan Bettegowda;  Nickolas Papadopoulos;  Kenneth W. Kinzler;  Bert Vogelstein;  Sandra B. Gabelli;  Shibin Zhou
收藏  |  浏览/下载:35/0  |  提交时间:2021/03/12
Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans 期刊论文
Science, 2020
作者:  Prabhu S. Arunachalam;  Florian Wimmers;  Chris Ka Pun Mok;  Ranawaka A. P. M. Perera;  Madeleine Scott;  Thomas Hagan;  Natalia Sigal;  Yupeng Feng;  Laurel Bristow;  Owen Tak-Yin Tsang;  Dhananjay Wagh;  John Coller;  Kathryn L. Pellegrini;  Dmitri Kazmin;  Ghina Alaaeddine;  Wai Shing Leung;  Jacky Man Chun Chan;  Thomas Shiu Hong Chik;  Chris Yau Chung Choi;  Christopher Huerta;  Michele Paine McCullough;  Huibin Lv;  Evan Anderson;  Srilatha Edupuganti;  Amit A. Upadhyay;  Steve E. Bosinger;  Holden Terry Maecker;  Purvesh Khatri;  Nadine Rouphael;  Malik Peiris;  Bali Pulendran
收藏  |  浏览/下载:27/0  |  提交时间:2020/09/08
Highly porous nature of a primitive asteroid revealed by thermal imaging 期刊论文
NATURE, 2020, 579 (7800) : 518-522
作者:  Quinn, Robert A.;  Melnik, Alexey, V;  Vrbanac, Alison;  Fu, Ting;  Patras, Kathryn A.;  Christy, Mitchell P.;  Bodai, Zsolt;  Belda-Ferre, Pedro;  Tripathi, Anupriya;  Chung, Lawton K.;  Downes, Michael;  Welch, Ryan D.;  Quinn, Melissa;  Humphrey, Greg;  Panitchpakdi, Morgan;  Weldon, Kelly C.;  Aksenov, Alexander;  da Silva, Ricardo;  Avila-Pacheco, Julian;  Clish, Clary;  Bae, Sena;  Mallick, Himel;  Franzosa, Eric A.;  Lloyd-Price, Jason;  Bussell, Robert;  Thron, Taren;  Nelson, Andrew T.;  Wang, Mingxun;  Leszczynski, Eric;  Vargas, Fernando;  Gauglitz, Julia M.;  Meehan, Michael J.;  Gentry, Emily;  Arthur, Timothy D.;  Komor, Alexis C.;  Poulsen, Orit;  Boland, Brigid S.;  Chang, John T.;  Sandborn, William J.;  Lim, Meerana;  Garg, Neha;  Lumeng, Julie C.;  Xavier, Ramnik J.;  Kazmierczak, Barbara, I;  Jain, Ruchi;  Egan, Marie;  Rhee, Kyung E.;  Ferguson, David;  Raffatellu, Manuela;  Vlamakis, Hera;  Haddad, Gabriel G.;  Siegel, Dionicio;  Huttenhower, Curtis;  Mazmanian, Sarkis K.;  Evans, Ronald M.;  Nizet, Victor;  Knight, Rob;  Dorrestein, Pieter C.
收藏  |  浏览/下载:97/0  |  提交时间:2020/05/13

Carbonaceous (C-type) asteroids(1) are relics of the early Solar System that have preserved primitive materials since their formation approximately 4.6 billion years ago. They are probably analogues of carbonaceous chondrites(2,3) and are essential for understanding planetary formation processes. However, their physical properties remain poorly known because carbonaceous chondrite meteoroids tend not to survive entry to Earth'  s atmosphere. Here we report on global one-rotation thermographic images of the C-type asteroid 162173 Ryugu, taken by the thermal infrared imager (TIR)(4) onboard the spacecraft Hayabusa2(5), indicating that the asteroid'  s boulders and their surroundings have similar temperatures, with a derived thermal inertia of about 300 J m(-2) s(-0.5) K-1 (300 tiu). Contrary to predictions that the surface consists of regolith and dense boulders, this low thermal inertia suggests that the boulders are more porous than typical carbonaceous chondrites(6) and that their surroundings are covered with porous fragments more than 10 centimetres in diameter. Close-up thermal images confirm the presence of such porous fragments and the flat diurnal temperature profiles suggest a strong surface roughness effect(7,8). We also observed in the close-up thermal images boulders that are colder during the day, with thermal inertia exceeding 600 tiu, corresponding to dense boulders similar to typical carbonaceous chondrites(6). These results constrain the formation history of Ryugu: the asteroid must be a rubble pile formed from impact fragments of a parent body with microporosity(9) of approximately 30 to 50 per cent that experienced a low degree of consolidation. The dense boulders might have originated from the consolidated innermost region or they may have an exogenic origin. This high-porosity asteroid may link cosmic fluffy dust to dense celestial bodies(10).


Thermal imaging data obtained from the spacecraft Hayabusa2 reveal that the carbonaceous asteroid 162173 Ryugu is an object of unusually high porosity.


  
Chiral superconductivity in heavy-fermion metal UTe2 期刊论文
NATURE, 2020, 579 (7800) : 523-527
作者:  Chica, Daniel G.;  He, Yihui;  McCall, Kyle M.;  Chung, Duck Young;  Pak, Rahmi O.;  Trimarchi, Giancarlo;  Liu, Zhifu;  De Lurgio, Patrick M.;  Wessels, Bruce W.;  Kanatzidis, Mercouri G.
收藏  |  浏览/下载:67/0  |  提交时间:2020/07/03

Scanning tunnelling microscopy and spectroscopy measurements show chiral edge states inside the superconducting gap of the heavy-fermion superconductor UTe2, indicating the presence of chiral spin-triplet superconductivity.


Spin-triplet superconductors are condensates of electron pairs with spin 1 and an odd-parity wavefunction(1). An interesting manifestation of triplet pairing is the chiral p-wave state, which is topologically non-trivial and provides a natural platform for realizing Majorana edge modes(2,3). However, triplet pairing is rare in solid-state systems and has not been unambiguously identified in any bulk compound so far. Given that pairing is usually mediated by ferromagnetic spin fluctuations, uranium-based heavy-fermion systems containing f-electron elements, which can harbour both strong correlations and magnetism, are considered ideal candidates for realizing spin-triplet superconductivity(4). Here we present scanning tunnelling microscopy studies of the recently discovered heavy-fermion superconductor UTe2, which has a superconducting transition temperature of 1.6 kelvin(5). We find signatures of coexisting Kondo effect and superconductivity that show competing spatial modulations within one unit cell. Scanning tunnelling spectroscopy at step edges reveals signatures of chiral in-gap states, which have been predicted to exist at the boundaries of topological superconductors. Combined with existing data that indicate triplet pairing in UTe2, the presence of chiral states suggests that UTe2 is a strong candidate for chiral-triplet topological superconductivity.


  
Metabolites released from apoptotic cells act as tissue messengers 期刊论文
NATURE, 2020
作者:  Chica, Daniel G.;  He, Yihui;  McCall, Kyle M.;  Chung, Duck Young;  Pak, Rahmi O.;  Trimarchi, Giancarlo;  Liu, Zhifu;  De Lurgio, Patrick M.;  Wessels, Bruce W.;  Kanatzidis, Mercouri G.
收藏  |  浏览/下载:34/0  |  提交时间:2020/07/03

Caspase-dependent apoptosis accounts for approximately 90% of homeostatic cell turnover in the body(1), and regulates inflammation, cell proliferation, and tissue regeneration(2-4). How apoptotic cells mediate such diverse effects is not fully understood. Here we profiled the apoptotic metabolite secretome and determined its effects on the tissue neighbourhood. We show that apoptotic lymphocytes and macrophages release specific metabolites, while retaining their membrane integrity. A subset of these metabolites is also shared across different primary cells and cell lines after the induction of apoptosis by different stimuli. Mechanistically, the apoptotic metabolite secretome is not simply due to passive emptying of cellular contents and instead is a regulated process. Caspase-mediated opening of pannexin 1 channels at the plasma membrane facilitated the release of a select subset of metabolites. In addition, certain metabolic pathways continued to remain active during apoptosis, with the release of only select metabolites from a given pathway. Functionally, the apoptotic metabolite secretome induced specific gene programs in healthy neighbouring cells, including suppression of inflammation, cell proliferation, and wound healing. Furthermore, a cocktail of apoptotic metabolites reduced disease severity in mouse models of inflammatory arthritis and lung-graft rejection. These data advance the concept that apoptotic cells are not inert cells waiting for removal, but instead release metabolites as '  good-bye'  signals to actively modulate outcomes in tissues.


Apoptotic cells communicate with neighbouring cells by the regulated release of specific metabolites, and a cocktail of select apoptotic metabolites reduces disease severity in mouse models of inflammatory arthritis and lung transplant rejection.


  
Experimental demonstration of memory-enhanced quantum communication 期刊论文
NATURE, 2020
作者:  Quinn, Robert A.;  Melnik, Alexey, V;  Vrbanac, Alison;  Fu, Ting;  Patras, Kathryn A.;  Christy, Mitchell P.;  Bodai, Zsolt;  Belda-Ferre, Pedro;  Tripathi, Anupriya;  Chung, Lawton K.;  Downes, Michael;  Welch, Ryan D.;  Quinn, Melissa;  Humphrey, Greg;  Panitchpakdi, Morgan;  Weldon, Kelly C.;  Aksenov, Alexander;  da Silva, Ricardo;  Avila-Pacheco, Julian;  Clish, Clary;  Bae, Sena;  Mallick, Himel;  Franzosa, Eric A.;  Lloyd-Price, Jason;  Bussell, Robert;  Thron, Taren;  Nelson, Andrew T.;  Wang, Mingxun;  Leszczynski, Eric;  Vargas, Fernando;  Gauglitz, Julia M.;  Meehan, Michael J.;  Gentry, Emily;  Arthur, Timothy D.;  Komor, Alexis C.;  Poulsen, Orit;  Boland, Brigid S.;  Chang, John T.;  Sandborn, William J.;  Lim, Meerana;  Garg, Neha;  Lumeng, Julie C.;  Xavier, Ramnik J.;  Kazmierczak, Barbara, I;  Jain, Ruchi;  Egan, Marie;  Rhee, Kyung E.;  Ferguson, David;  Raffatellu, Manuela;  Vlamakis, Hera;  Haddad, Gabriel G.;  Siegel, Dionicio;  Huttenhower, Curtis;  Mazmanian, Sarkis K.;  Evans, Ronald M.;  Nizet, Victor;  Knight, Rob;  Dorrestein, Pieter C.
收藏  |  浏览/下载:67/0  |  提交时间:2020/07/03

The ability to communicate quantum information over long distances is of central importance in quantum science and engineering(1). Although some applications of quantum communication such as secure quantum key distribution(2,3) are already being successfully deployed(4-7), their range is currently limited by photon losses and cannot be extended using straightforward measure-and-repeat strategies without compromising unconditional security(8). Alternatively, quantum repeaters(9), which utilize intermediate quantum memory nodes and error correction techniques, can extend the range of quantum channels. However, their implementation remains an outstanding challenge(10-16), requiring a combination of efficient and high-fidelity quantum memories, gate operations, and measurements. Here we use a single solid-state spin memory integrated in a nanophotonic diamond resonator(17-19) to implement asynchronous photonic Bell-state measurements, which are a key component of quantum repeaters. In a proof-of-principle experiment, we demonstrate high-fidelity operation that effectively enables quantum communication at a rate that surpasses the ideal loss-equivalent direct-transmission method while operating at megahertz clock speeds. These results represent a crucial step towards practical quantum repeaters and large-scale quantum networks(20,21).


A solid-state spin memory is used to demonstrate quantum repeater functionality, which has the potential to overcome photon losses involved in long-distance transmission of quantum information.