GSTDTAP

浏览/检索结果: 共22条,第1-10条 帮助

限定条件                
已选(0)清除 条数/页:   排序方式:
科学家利用光纤电缆研究北极海底的多年冻土 快报文章
地球科学快报,2024年第1期
作者:  王立伟
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:7/0  |  提交时间:2024/01/10
fiber optic cable  Arctic seafloor  permafrost  
科学家利用光纤电缆研究北极海底的多年冻土 快报文章
地球科学快报,2024年第1期
作者:  王立伟
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:7/0  |  提交时间:2024/01/10
fiber optic cable  Arctic seafloor  permafrost  
科学家利用光纤电缆研究北极海底的多年冻土 快报文章
地球科学快报,2024年第1期
作者:  王立伟
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:479/0  |  提交时间:2024/01/10
fiber optic cable  Arctic seafloor  permafrost  
北极多年冻土退化或致工业遗址污染物排放风险增大 快报文章
地球科学快报,2023年第08期
作者:  刘文浩
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:544/0  |  提交时间:2023/04/25
Arctic  Permafrost  contamination  
新研究发现北极多年冻土退化引发了海底变形 快报文章
地球科学快报,2022年第06期
作者:  刘文浩
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:622/0  |  提交时间:2022/03/25
the Arctic  permafrost  seafloor  Underwater mapping  
监测土壤冻结特征的新技术助力保障多年冻土区建设安全 快报文章
地球科学快报,2022年第06期
作者:  刘文浩
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:612/0  |  提交时间:2022/03/25
permafrost  Freezing point  unfrozen water  
新研究基于多方法联合开展北极多年冻土区冰楔遗迹识别 快报文章
地球科学快报,2022年第05期
作者:  刘文浩
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:644/0  |  提交时间:2022/03/09
Arctic  Permafrost  Satellites  Supercomputers  Deep Learning  
新研究发现多年冻土区深部碳酸盐层释放温室气体 快报文章
地球科学快报,2021年第16期
作者:  刘文浩
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:741/0  |  提交时间:2021/08/24
Methane  Greenhouse gases  Global warming  permafrost  
新研究称多年冻土在40万年以前发生大范围融化 快报文章
地球科学快报,2021年第9期
作者:  刘文浩
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:413/0  |  提交时间:2021/05/08
permafrost  carbon cycle  Canadian speleothems  
Preindustrial (CH4)-C-14 indicates greater anthropogenic fossil CH4 emissions 期刊论文
NATURE, 2020, 578 (7795) : 409-+
作者:  Keener, Megan;  Hunt, Camden;  Carroll, Timothy G.;  Kampel, Vladimir;  Dobrovetsky, Roman;  Hayton, Trevor W.;  Menard, Gabriel
收藏  |  浏览/下载:25/0  |  提交时间:2020/05/13

Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era(1). Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate(2,3). Carbon-14 in CH4 ((CH4)-C-14) can be used to distinguish between fossil (C-14-free) CH4 emissions and contemporaneous biogenic sources  however, poorly constrained direct (CH4)-C-14 emissions from nuclear reactors have complicated this approach since the middle of the 20th century(4,5). Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year)(2,3) between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate  emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year(6,7). Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago(8), but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core (CH4)-C-14 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)-an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions(9,10).


Isotopic evidence from ice cores indicates that preindustrial-era geological methane emissions were lower than previously thought, suggesting that present-day emissions of methane from fossil fuels are underestimated.