GSTDTAP

浏览/检索结果: 共100条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Human influence has intensified extreme precipitation in North America 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (24) : 13308-13313
作者:  Kirchmeier-Young, Megan C.;  Zhang, Xuebin
收藏  |  浏览/下载:6/0  |  提交时间:2020/06/09
extreme precipitation  attribution  regional climate change  
Increased drought severity tracks warming in the United States' largest river basin 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (21) : 11328-11336
作者:  Martin, Justin T.;  Pederson, Gregory T.;  Woodhouse, Connie A.;  Cook, Edward R.;  McCabe, Gregory J.;  Anchukaitis, Kevin J.;  Wise, Erika K.;  Erger, Patrick J.;  Dolan, Larry;  McGuire, Marketa;  Gangopadhyay, Subhrendu;  Chase, Katherine J.;  Littell, Jeremy S.;  Gray, Stephen T.;  George, Scott St.;  Friedman, Jonathan M.;  Sauchyn, David J.;  St-Jacques, Jeannine-Marie;  King, John
收藏  |  浏览/下载:14/0  |  提交时间:2020/05/13
drought severity  streamflow  temperature  precipitation  water resources  
A Multicentury Perspective on the Relative Influence of Seasonal Precipitation on Streamflow in the Missouri River Headwaters 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (5)
作者:  Frederick, S. E.;  Woodhouse, C. A.
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/02
Missouri River  drought  tree rings  precipitation  snow  streamflow  
Extreme rainfall triggered the 2018 rift eruption at Kilauea Volcano 期刊论文
NATURE, 2020, 580 (7804) : 491-+
作者:  Cloutier, Richard;  Clement, Alice M.;  Lee, Michael S. Y.;  Noel, Roxanne;  Bechard, Isabelle;  Roy, Vincent;  Long, John A.
收藏  |  浏览/下载:33/0  |  提交时间:2020/05/13

The May 2018 rift intrusion and eruption of Kilauea Volcano, Hawai'  i, represented one of its most extraordinary eruptive sequences in at least 200 years, yet the trigger mechanism remains elusive(1). The event was preceded by several months of anomalously high precipitation. It has been proposed that rainfall can modulate shallow volcanic activity(2,3), but it remains unknown whether it can have impacts at the greater depths associated with magma transport. Here we show that immediately before and during the eruption, infiltration of rainfall into Kilauea Volcano'  s subsurface increased pore pressure at depths of 1 to 3 kilometres by 0.1 to 1 kilopascals, to its highest pressure in almost 50 years. We propose that weakening and mechanical failure of the edifice was driven by changes in pore pressure within the rift zone, prompting opportunistic dyke intrusion and ultimately facilitating the eruption. A precipitation-induced eruption trigger is consistent with the lack of precursory summit inflation, showing that this intrusion-unlike others-was not caused by the forceful intrusion of new magma into the rift zone. Moreover, statistical analysis of historic eruption occurrence suggests that rainfall patterns contribute substantially to the timing and frequency of Kilauea'  s eruptions and intrusions. Thus, volcanic activity can be modulated by extreme rainfall triggering edifice rock failure-a factor that should be considered when assessing volcanic hazards. Notably, the increasingly extreme weather patterns associated with ongoing anthropogenic climate change could increase the potential for rainfall-triggered volcanic phenomena worldwide.


Immediately before and during the eruption of Ki & x304  lauea Volcano in May 2018, anomalously high rainfall increased the pore pressure in the subsurface to its highest level in 50 years, causing weakening and mechanical failure of the edifice.


  
Dry and moist dynamics shape regional patterns of extreme precipitation sensitivity 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (16) : 8757-8763
作者:  Nie, Ji;  Dai, Panxi;  Sobel, Adam H.
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13
precipitation extreme  convection  climate change  
The projected timing of abrupt ecological disruption from climate change 期刊论文
NATURE, 2020, 580 (7804) : 496-+
作者:  Gorgulla, Christoph;  Boeszoermenyi, Andras;  Wang, Zi-Fu;  Fischer, Patrick D.;  Coote, Paul W.;  Padmanabha Das, Krishna M.;  Malets, Yehor S.;  Radchenko, Dmytro S.;  Moroz, Yurii S.;  Scott, David A.;  Fackeldey, Konstantin;  Hoffmann, Moritz;  Iavniuk, Iryna;  Wagner, Gerhard;  Arthanari, Haribabu
收藏  |  浏览/下载:55/0  |  提交时间:2020/05/13

As anthropogenic climate change continues the risks to biodiversity will increase over time, with future projections indicating that a potentially catastrophic loss of global biodiversity is on the horizon(1-3). However, our understanding of when and how abruptly this climate-driven disruption of biodiversity will occur is limited because biodiversity forecasts typically focus on individual snapshots of the future. Here we use annual projections (from 1850 to 2100) of temperature and precipitation across the ranges of more than 30,000 marine and terrestrial species to estimate the timing of their exposure to potentially dangerous climate conditions. We project that future disruption of ecological assemblages as a result of climate change will be abrupt, because within any given ecological assemblage the exposure of most species to climate conditions beyond their realized niche limits occurs almost simultaneously. Under a high-emissions scenario (representative concentration pathway (RCP) 8.5), such abrupt exposure events begin before 2030 in tropical oceans and spread to tropical forests and higher latitudes by 2050. If global warming is kept below 2 degrees C, less than 2% of assemblages globally are projected to undergo abrupt exposure events of more than 20% of their constituent species  however, the risk accelerates with the magnitude of warming, threatening 15% of assemblages at 4 degrees C, with similar levels of risk in protected and unprotected areas. These results highlight the impending risk of sudden and severe biodiversity losses from climate change and provide a framework for predicting both when and where these events may occur.


Using annual projections of temperature and precipitation to estimate when species will be exposed to potentially harmful climate conditions reveals that disruption of ecological assemblages as a result of climate change will be abrupt and could start as early as the current decade.


  
Water Resources as Determinants for Foreign Direct Investments in Land - A Gravity Analysis of Foreign Land Acquisitions 期刊论文
ECOLOGICAL ECONOMICS, 2020, 170
作者:  Hirsch, Cornelius;  Krisztin, Tamas;  See, Linda
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/02
FDI  Foreign Land Acquisition  Bilateral Trade Agreements  Water Resources  Precipitation  Yield Gap  Gravity model  PPML  ZIP  
Defining a Riverine Tidal Freshwater Zone and Its Spatiotemporal Dynamics 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (4)
作者:  Jones, Allan E.;  Hardison, Amber K.;  Hodges, Ben R.;  McClelland, James W.;  Moffett, Kevan B.
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/02
freshwater  tide  river  precipitation  estuary  energy transport  
Vulnerability and resistance in the spatial heterogeneity of soil microbial communities under resource additions 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (13) : 7263-7270
作者:  Gravuer, Kelly;  Eskelinen, Anu;  Winbourne, Joy B.;  Harrison, Susan P.
收藏  |  浏览/下载:14/0  |  提交时间:2020/05/13
grasslands  homogenization  climate change  precipitation  eutrophication  
A pause in Southern Hemisphere circulation trends due to the Montreal Protocol 期刊论文
NATURE, 2020, 579 (7800) : 544-548
作者:  Imai, Yu;  Meyer, Kirsten J.;  Iinishi, Akira;  Favre-Godal, Quentin;  Green, Robert;  Manuse, Sylvie;  Caboni, Mariaelena;  Mori, Miho;  Niles, Samantha;  Ghiglieri, Meghan;  Honrao, Chandrashekhar;  Ma, Xiaoyu;  Guo, Jason J.;  Makriyannis, Alexandros;  Linares-Otoya, Luis;  Boehringer, Nils;  Wuisan, Zerlina G.;  Kaur, Hundeep;  Wu, Runrun;  Mateus, Andre
收藏  |  浏览/下载:20/0  |  提交时间:2020/05/13

Observations show robust near-surface trends in Southern Hemisphere tropospheric circulation towards the end of the twentieth century, including a poleward shift in the mid-latitude jet(1,2), a positive trend in the Southern Annular Mode(1,3-6) and an expansion of the Hadley cell(7,8). It has been established that these trends were driven by ozone depletion in the Antarctic stratosphere due to emissions of ozone-depleting substances(9-11). Here we show that these widely reported circulation trends paused, or slightly reversed, around the year 2000. Using a pattern-based detection and attribution analysis of atmospheric zonal wind, we show that the pause in circulation trends is forced by human activities, and has not occurred owing only to internal or natural variability of the climate system. Furthermore, we demonstrate that stratospheric ozone recovery, resulting from the Montreal Protocol, is the key driver of the pause. Because pre-2000 circulation trends have affected precipitation(12-14), and potentially ocean circulation and salinity(15-17), we anticipate that a pause in these trends will have wider impacts on the Earth system. Signatures of the effects of the Montreal Protocol and the associated stratospheric ozone recovery might therefore manifest, or have already manifested, in other aspects of the Earth system.