GSTDTAP

浏览/检索结果: 共22条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
澳大利亚研究人员开发出新的勘探技术 快报文章
地球科学快报,2022年第09期
作者:  张树良
Microsoft Word(13Kb)  |  收藏  |  浏览/下载:626/0  |  提交时间:2022/05/10
exploration technology  seismic sensing  laser measurement  Western Australian  
Quantum entanglement between an atom and a molecule 期刊论文
NATURE, 2020, 581 (7808) : 273-+
作者:  Trisos, Christopher H.;  Merow, Cory;  Pigot, Alex L.
收藏  |  浏览/下载:30/0  |  提交时间:2020/07/03

Conventional information processors convert information between different physical carriers for processing, storage and transmission. It seems plausible that quantum information will also be held by different physical carriers in applications such as tests of fundamental physics, quantum enhanced sensors and quantum information processing. Quantum controlled molecules, in particular, could transduce quantum information across a wide range of quantum bit (qubit) frequencies-from a few kilohertz for transitions within the same rotational manifold(1), a few gigahertz for hyperfine transitions, a few terahertz for rotational transitions, to hundreds of terahertz for fundamental and overtone vibrational and electronic transitions-possibly all within the same molecule. Here we demonstrate entanglement between the rotational states of a (CaH+)-Ca-40 molecular ion and the internal states of a Ca-40(+) atomic ion(2). We extend methods used in quantum logic spectroscopy(1,3) for pure-state initialization, laser manipulation and state readout of the molecular ion. The quantum coherence of the Coulomb coupled motion between the atomic and molecular ions enables subsequent entangling manipulations. The qubit addressed in the molecule has a frequency of either 13.4 kilohertz(1) or 855 gigahertz(3), highlighting the versatility of molecular qubits. Our work demonstrates how molecules can transduce quantum information between qubits with different frequencies to enable hybrid quantum systems. We anticipate that our method of quantum control and measurement of molecules will find applications in quantum information science, quantum sensors, fundamental and applied physics, and controlled quantum chemistry.


Quantum entanglement is realized between rotational levels of a molecular ion with energy differences spanning several orders of magnitude and long-lived internal states of a single atomic ion.


  
Global and regional model simulations of atmospheric ammonia 期刊论文
ATMOSPHERIC RESEARCH, 2020, 234
作者:  Khan, M. A. H.;  Lowe, D.;  Derwent, R. G.;  Foulds, A.;  Chhantyal-Pun, R.;  McFiggans, G.;  Orr-Ewing, A. J.;  Percival, C. J.;  Shallcross, D. E.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
Atmospheric ammonia  Aerosol  Agricultural emissions, global loss  Global burden  Atmospheric life-time  Satellite measurement  
Spin squeezing of 10(11) atoms by prediction and retrodiction measurements 期刊论文
NATURE, 2020, 581 (7807) : 159-+
作者:  Lan, Jun;  Ge, Jiwan;  Yu, Jinfang;  Shan, Sisi;  Zhou, Huan;  Fan, Shilong;  Zhang, Qi;  Shi, Xuanling;  Wang, Qisheng;  Zhang, Linqi;  Wang, Xinquan
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

The measurement sensitivity of quantum probes using N uncorrelated particles is restricted by the standard quantum limit(1), which is proportional to 1/root N. This limit, however, can be overcome by exploiting quantum entangled states, such as spin-squeezed states(2). Here we report the measurement-based generation of a quantum state that exceeds the standard quantum limit for probing the collective spin of 10(11) rubidium atoms contained in a macroscopic vapour cell. The state is prepared and verified by sequences of stroboscopic quantum non-demolition (QND) measurements. We then apply the theory of past quantum states(3,4) to obtain spin state information from the outcomes of both earlier and later QND measurements. Rather than establishing a physically squeezed state in the laboratory, the past quantum state represents the combined system information from these prediction and retrodiction measurements. This information is equivalent to a noise reduction of 5.6 decibels and a metrologically relevant squeezing of 4.5 decibels relative to the coherent spin state. The past quantum state yields tighter constraints on the spin component than those obtained by conventional QND measurements. Our measurement uses 1,000 times more atoms than previous squeezing experiments(5-10), with a corresponding angular variance of the squeezed collective spin of 4.6 x 10(-13) radians squared. Although this work is rooted in the foundational theory of quantum measurements, it may find practical use in quantum metrology and quantum parameter estimation, as we demonstrate by applying our protocol to quantum enhanced atomic magnetometry.


  
Mass spectrometry for future atomic clocks 期刊论文
NATURE, 2020, 581 (7806) : 35-36
作者:  Padian, Kevin
收藏  |  浏览/下载:3/0  |  提交时间:2020/07/03

Measurement of a metastable electronic state in a highly charged ion.


Highly charged ions could form the basis of the next generation of ultra-precise clocks, using electronic transitions in the ions as the '  pendulum'  . An ingenious method for characterizing such transitions has been reported.


  
Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations 期刊论文
NATURE, 2020, 580 (7803) : 339-+
作者:  Houben, Lothar;  Weissman, Haim;  Wolf, Sharon G.;  Rybtchinski, Boris
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

The charge-conjugation and parity-reversal (CP) symmetry of fundamental particles is a symmetry between matter and antimatter. Violation of this CP symmetry was first observed in 1964(1), and CP violation in the weak interactions of quarks was soon established(2). Sakharov proposed(3) that CP violation is necessary to explain the observed imbalance of matter and antimatter abundance in the Universe. However, CP violation in quarks is too small to support this explanation. So far, CP violation has not been observed in non-quark elementary particle systems. It has been shown that CP violation in leptons could generate the matter-antimatter disparity through a process called leptogenesis(4). Leptonic mixing, which appears in the standard model'  s charged current interactions(5,6), provides a potential source of CP violation through a complex phase dCP, which is required by some theoretical models of leptogenesis(7-9). This CP violation can be measured in muon neutrino to electron neutrino oscillations and the corresponding antineutrino oscillations, which are experimentally accessible using accelerator-produced beams as established by the Tokai-to-Kamioka (T2K) and NOvA experiments(10,11). Until now, the value of dCP has not been substantially constrained by neutrino oscillation experiments. Here we report a measurement using long-baseline neutrino and antineutrino oscillations observed by the T2K experiment that shows a large increase in the neutrino oscillation probability, excluding values of dCP that result in a large increase in the observed antineutrino oscillation probability at three standard deviations (3 sigma). The 3 sigma confidence interval for delta(CP), which is cyclic and repeats every 2p, is [-3.41, -0.03] for the so-called normal mass ordering and [-2.54, -0.32] for the inverted mass ordering. Our results indicate CP violation in leptons and our method enables sensitive searches for matter-antimatter asymmetry in neutrino oscillations using accelerator-produced neutrino beams. Future measurements with larger datasets will test whether leptonic CP violation is larger than the CP violation in quarks.


  
Collisional cooling of ultracold molecules 期刊论文
NATURE, 2020, 580 (7802) : 197-+
作者:  Wang, Qinyang;  Wang, Yupeng;  Ding, Jingjin;  Wang, Chunhong;  Zhou, Xuehan;  Gao, Wenqing;  Huang, Huanwei;  Shao, Feng;  Liu, Zhibo
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Since the original work on Bose-Einstein condensation(1,2), the use of quantum degenerate gases of atoms has enabled the quantum emulation of important systems in condensed matter and nuclear physics, as well as the study of many-body states that have no analogue in other fields of physics(3). Ultracold molecules in the micro- and nanokelvin regimes are expected to bring powerful capabilities to quantum emulation(4) and quantum computing(5), owing to their rich internal degrees of freedom compared to atoms, and to facilitate precision measurement and the study of quantum chemistry(6). Quantum gases of ultracold atoms can be created using collision-based cooling schemes such as evaporative cooling, but thermalization and collisional cooling have not yet been realized for ultracold molecules. Other techniques, such as the use of supersonic jets and cryogenic buffer gases, have reached temperatures limited to above 10 millikelvin(7,8). Here we show cooling of NaLi molecules to micro- and nanokelvin temperatures through collisions with ultracold Na atoms, with both molecules and atoms prepared in their stretched hyperfine spin states. We find a lower bound on the ratio of elastic to inelastic molecule-atom collisions that is greater than 50-large enough to support sustained collisional cooling. By employing two stages of evaporation, we increase the phase-space density of the molecules by a factor of 20, achieving temperatures as low as 220 nanokelvin. The favourable collisional properties of the Na-NaLi system could enable the creation of deeply quantum degenerate dipolar molecules and raises the possibility of using stretched spin states in the cooling of other molecules.


NaLi molecules are cooled to micro- and nanokelvin temperatures through collisions with ultracold Na atoms by using molecules and atoms in stretched hyperfine spin states and applying two evaporation stages.


  
Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide 期刊论文
NATURE, 2020, 578 (7796) : 545-+
作者:  Kum, Hyun S.;  Lee, Hyungwoo;  Kim, Sungkyu;  Lindemann, Shane;  Kong, Wei;  Qiao, Kuan;  Chen, Peng;  Irwin, Julian;  Lee, June Hyuk;  Xie, Saien;  Subramanian, Shruti;  Shim, Jaewoo;  Bae, Sang-Hoon;  Choi, Chanyeol;  Ranno, Luigi;  Seo, Seungju;  Lee, Sangho;  Bauer, Jackson;  Li, Huashan;  Lee, Kyusang;  Robinson, Joshua A.;  Ross, Caroline A.;  Schlom, Darrell G.;  Rzchowski, Mark S.;  Eom, Chang-Beom;  Kim, Jeehwan
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Chirality is ubiquitous in nature, and populations of opposite chiralities are surprisingly asymmetric at fundamental levels(1,2). Examples range from parity violation in the subatomic weak force to homochirality in biomolecules. The ability to achieve chirality-selective synthesis (chiral induction) is of great importance in stereochemistry, molecular biology and pharmacology(2). In condensed matter physics, a crystalline electronic system is geometrically chiral when it lacks mirror planes, space-inversion centres or rotoinversion axes(1). Typically, geometrical chirality is predefined by the chiral lattice structure of a material, which is fixed on formation of the crystal. By contrast, in materials with gyrotropic order(3-6), electrons spontaneously organize themselves to exhibit macroscopic chirality in an originally achiral lattice. Although such order-which has been proposed as the quantum analogue of cholesteric liquid crystals-has attracted considerable interest(3-15), no clear observation or manipulation of gyrotropic order has been achieved so far. Here we report the realization of optical chiral induction and the observation of a gyrotropically ordered phase in the transition-metal dichalcogenide semimetal 1T-TiSe2. We show that shining mid-infrared circularly polarized light on 1T-TiSe2 while cooling it below the critical temperature leads to the preferential formation of one chiral domain. The chirality of this state is confirmed by the measurement of an out-of-plane circular photogalvanic current, the direction of which depends on the optical induction. Although the role of domain walls requires further investigation with local probes, the methodology demonstrated here can be applied to realize and control chiral electronic phases in other quantum materials(4,16).


Optical chiral induction and spontaneous gyrotropic electronic order are realized in the transition-metal chalcogenide 1T-TiSe2 by using illumination with mid-infrared circularly polarized light and simultaneous cooling below the critical temperature.


  
Hidden diversity of vacancy networks in Prussian blue analogues 期刊论文
NATURE, 2020, 578 (7794) : 256-+
作者:  Hendrickx, N. W.;  Franke, D. P.;  Sammak, A.;  Scappucci, G.;  Veldhorst, M.
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Prussian blue analogues (PBAs) are a diverse family of microporous inorganic solids, known for their gas storage ability(1), metal-ion immobilization(2), proton conduction(3), and stimuli-dependent magnetic(4,5), electronic(6) and optical(7) properties. This family of materials includes the double-metal cyanide catalysts(8,9) and the hexacyanoferrate/ hexacyanomanganate battery materials(10,11). Central to the various physical properties of PBAs is their ability to reversibly transport mass, a process enabled by structural vacancies. Conventionally presumed to be random(12,13), vacancy arrangements are crucial because they control micropore-network characteristics, and hence the diffusivity and adsorption profiles(14,15). The long-standing obstacle to characterizing the vacancy networks of PBAs is the inaccessibility of single crystals(16). Here we report the growth of single crystals of various PBAs and the measurement and interpretation of their X-ray diffuse scattering patterns. We identify a diversity of non-random vacancy arrangements that is hidden from conventional crystallographic powder analysis. Moreover, we explain this unexpected phase complexity in terms of a simple microscopic model that is based on local rules of electroneutrality and centrosymmetry. The hidden phase boundaries that emerge demarcate vacancynetwork polymorphs with very different micropore characteristics. Our results establish a foundation for correlated defect engineering in PBAs as a means of controlling storage capacity, anisotropy and transport efficiency.


  
Identification and application of the most suitable entropy model for precipitation complexity measurement 期刊论文
ATMOSPHERIC RESEARCH, 2019, 221: 88-97
作者:  Zhang, Liangliang;  Li, Heng;  Liu, Dong;  Fu, Qiang;  Li, Mo;  Faiz, Muhammad Abrar;  Khan, Muhammad Imran;  Li, Tianxiao
收藏  |  浏览/下载:11/0  |  提交时间:2019/11/26
Precipitation  Complexity measurement  Entropy theory  Multi-model optimization  Impact factor