GSTDTAP

浏览/检索结果: 共5条,第1-5条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Echolocation in soft-furred tree mice 期刊论文
Science, 2021
作者:  Kai He;  Qi Liu;  Dong-Ming Xu;  Fei-Yan Qi;  Jing Bai;  Shui-Wang He;  Peng Chen;  Xin Zhou;  Wan-Zhi Cai;  Zhong-Zheng Chen;  Zhen Liu;  Xue-Long Jiang;  Peng Shi
收藏  |  浏览/下载:11/0  |  提交时间:2021/06/24
Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity 期刊论文
Science, 2021
作者:  Wei Hui;  Lingfeng Chao;  Hui Lu;  Fei Xia;  Qi Wei;  Zhenhuang Su;  Tingting Niu;  Lei Tao;  Bin Du;  Deli Li;  Yue Wang;  He Dong;  Shouwei Zuo;  Bixin Li;  Wei Shi;  Xueqin Ran;  Ping Li;  Hui Zhang;  Zhongbin Wu;  Chenxin Ran;  Lin Song;  Guichuan Xing;  Xingyu Gao;  Jing Zhang;  Yingdong Xia;  Yonghua Chen;  Wei Huang
收藏  |  浏览/下载:22/0  |  提交时间:2021/04/06
Notch signalling drives synovial fibroblast identity and arthritis pathology 期刊论文
NATURE, 2020, 582 (7811) : 259-+
作者:  Han, Xiaoping;  Zhou, Ziming;  Fei, Lijiang;  Sun, Huiyu;  Wang, Renying;  Chen, Yao;  Chen, Haide;  Wang, Jingjing;  Tang, Huanna;  Ge, Wenhao;  Zhou, Yincong;  Ye, Fang;  Jiang, Mengmeng;  Wu, Junqing;  Xiao, Yanyu;  Jia, Xiaoning;  Zhang, Tingyue;  Ma, Xiaojie;  Zhang, Qi;  Bai, Xueli;  Lai, Shujing;  Yu, Chengxuan;  Zhu, Lijun;  Lin, Rui;  Gao, Yuchi;  Wang, Min;  Wu, Yiqing;  Zhang, Jianming;  Zhan, Renya;  Zhu, Saiyong;  Hu, Hailan;  Wang, Changchun;  Chen, Ming;  Huang, He;  Liang, Tingbo;  Chen, Jianghua;  Wang, Weilin;  Zhang, Dan;  Guo, Guoji
收藏  |  浏览/下载:43/0  |  提交时间:2020/07/03

NOTCH3 signalling is shown to be the underlying driver of the differentiation and expansion of a subset of synovial fibroblasts implicated in the pathogenesis of rheumatoid arthritis.


The synovium is a mesenchymal tissue composed mainly of fibroblasts, with a lining and sublining that surround the joints. In rheumatoid arthritis the synovial tissue undergoes marked hyperplasia, becomes inflamed and invasive, and destroys the joint(1,2). It has recently been shown that a subset of fibroblasts in the sublining undergoes a major expansion in rheumatoid arthritis that is linked to disease activity(3-5)  however, the molecular mechanism by which these fibroblasts differentiate and expand is unknown. Here we identify a critical role for NOTCH3 signalling in the differentiation of perivascular and sublining fibroblasts that express CD90 (encoded by THY1). Using single-cell RNA sequencing and synovial tissue organoids, we found that NOTCH3 signalling drives both transcriptional and spatial gradients-emanating from vascular endothelial cells outwards-in fibroblasts. In active rheumatoid arthritis, NOTCH3 and Notch target genes are markedly upregulated in synovial fibroblasts. In mice, the genetic deletion of Notch3 or the blockade of NOTCH3 signalling attenuates inflammation and prevents joint damage in inflammatory arthritis. Our results indicate that synovial fibroblasts exhibit a positional identity that is regulated by endothelium-derived Notch signalling, and that this stromal crosstalk pathway underlies inflammation and pathology in inflammatory arthritis.


  
DNA-loop extruding condensin complexes can traverse one another 期刊论文
NATURE, 2020
作者:  Li, Xun;  Zhang, Fei;  He, Haiying;  Berry, Joseph J.;  Zhu, Kai;  Xu, Tao
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

Condensin, a key component of the structure maintenance of chromosome (SMC) protein complexes, has recently been shown to be a motor that extrudes loops of DNA(1). It remains unclear, however, how condensin complexes work together to collectively package DNA into chromosomes. Here we use time-lapse single-molecule visualization to study mutual interactions between two DNA-loop-extruding yeast condensins. We find that these motor proteins, which, individually, extrude DNA in one direction only are able to dynamically change each other'  s DNA loop sizes, even when far apart. When they are in close proximity, condensin complexes are able to traverse each other and form a loop structure, which we term a Z-loop-three double-stranded DNA helices aligned in parallel with one condensin at each edge. Z-loops can fill gaps left by single loops and can form symmetric dimer motors that pull in DNA from both sides. These findings indicate that condensin may achieve chromosomal compaction using a variety of looping structures.


Single-molecule visualization shows that condensin-a motor protein that extrudes DNA in one direction only-can encounter and pass a second condensin molecule to form a new type of DNA loop that gathers DNA from both sides.


  
Drivers of improved PM2.5 air quality in China from 2013 to 2017 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019
作者:  Qiang Zhang;  Yixuan Zheng;  Dan Tong;  Min Shao;  Shuxiao Wang;  Yuanhang Zhang;  Xiangde Xu;  Jinnan Wang;  Hong He;  Wenqing Liu;  Yihui Ding;  Yu Lei;  Junhua Li;  Zifa Wang;  Xiaoye Zhang;  Yuesi Wang;  Jing Cheng;  Yang Liu;  Qinren Shi;  Liu Yan;  Guannan Geng;  Chaopeng Hong;  Meng Li;  Fei Liu;  Bo Zheng;  Junji Cao;  Aijun Ding;  Jian Gao;  Qingyan Fu;  Juntao Huo;  Baoxian Liu;  Zirui Liu;  Fumo Yang;  Kebin He;  and Jiming Hao
收藏  |  浏览/下载:12/0  |  提交时间:2019/11/27
clean air actions  PM  emission abatements  air quality improvements  health benefits