GSTDTAP

浏览/检索结果: 共137条,第1-10条 帮助

限定条件                            
已选(0)清除 条数/页:   排序方式:
IGF1R is an entry receptor for respiratory syncytial virus (vol 53, pg 861, 2020) 期刊论文
NATURE, 2020, 583 (7815) : E22-E22
作者:  Smith, Jacob A.;  Wilson, Katy B.;  Sonstrom, Reilly E.;  Kelleher, Patrick J.;  Welch, Kevin D.;  Pert, Emmit K.;  Westendorff, Karl S.;  Dickie, Diane A.;  Wang, Xiaoping;  Pate, Brooks H.;  Harman, W. Dean
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  
Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I 期刊论文
NATURE, 2020, 581 (7806) : 100-+
作者:  Waszak, Sebastian M.;  Robinson, Giles W.;  Gudenas, Brian L.;  Smith, Kyle S.;  Forget, Antoine;  Kojic, Marija;  Garcia-Lopez, Jesus;  Hadley, Jennifer;  Hamilton, Kayla V.;  Indersie, Emilie;  Buchhalter, Ivo;  Kerssemakers, Jules;  Jager, Natalie;  Sharma, Tanvi;  Rausch, Tobias;  Kool, Marcel;  Sturm, Dominik;  Jones, David T. W.;  Vasilyeva, Aksana;  Tatevossian, Ruth G.;  Neale, Geoffrey;  Lombard, Berangere;  Loew, Damarys;  Nakitandwe, Joy;  Rusch, Michael;  Bowers, Daniel C.;  Bendel, Anne;  Partap, Sonia;  Chintagumpala, Murali;  Crawford, John;  Gottardo, Nicholas G.;  Smith, Amy;  Dufour, Christelle;  Rutkowski, Stefan;  Eggen, Tone;  Wesenberg, Finn;  Kjaerheim, Kristina;  Feychting, Maria;  Lannering, Birgitta;  Schuz, Joachim;  Johansen, Christoffer;  Andersen, Tina V.;  Roosli, Martin;  Kuehni, Claudia E.;  Grotzer, Michael;  Remke, Marc;  Puget, Stephanie;  Pajtler, Kristian W.;  Milde, Till;  Witt, Olaf;  Ryzhova, Marina;  Korshunov, Andrey;  Orr, Brent A.;  Ellison, David W.;  Brugieres, Laurence;  Lichter, Peter;  Nichols, Kim E.;  Gajjar, Amar;  Wainwright, Brandon J.;  Ayrault, Olivier;  Korbel, Jan O.;  Northcott, Paul A.;  Pfister, Stefan M.
收藏  |  浏览/下载:39/0  |  提交时间:2020/07/03

Immune evasion is a major obstacle for cancer treatment. Common mechanisms of evasion include impaired antigen presentation caused by mutations or loss of heterozygosity of the major histocompatibility complex class I (MHC-I), which has been implicated in resistance to immune checkpoint blockade (ICB) therapy(1-3). However, in pancreatic ductal adenocarcinoma (PDAC), which is resistant to most therapies including ICB4, mutations that cause loss of MHC-I are rarely found(5) despite the frequent downregulation of MHC-I expression(6-8). Here we show that, in PDAC, MHC-I molecules are selectively targeted for lysosomal degradation by an autophagy-dependent mechanism that involves the autophagy cargo receptor NBR1. PDAC cells display reduced expression of MHC-I at the cell surface and instead demonstrate predominant localization within autophagosomes and lysosomes. Notably, inhibition of autophagy restores surface levels of MHC-I and leads to improved antigen presentation, enhanced anti-tumour T cell responses and reduced tumour growth in syngeneic host mice. Accordingly, the anti-tumour effects of autophagy inhibition are reversed by depleting CD8(+) T cells or reducing surface expression of MHC-I. Inhibition of autophagy, either genetically or pharmacologically with chloroquine, synergizes with dual ICB therapy (anti-PD1 and anti-CTLA4 antibodies), and leads to an enhanced anti-tumour immune response. Our findings demonstrate a role for enhanced autophagy or lysosome function in immune evasion by selective targeting of MHC-I molecules for degradation, and provide a rationale for the combination of autophagy inhibition and dual ICB therapy as a therapeutic strategy against PDAC.


Inhibition of the autophagy-lysosome system upregulates surface expression of MHC class I proteins and enhances antigen presentation, and evokes a potent anti-tumour immune response that is mediated by CD8(+) T cells.


  
Pharmacologic fibroblast reprogramming into photoreceptors restores vision 期刊论文
NATURE, 2020, 581 (7806) : 83-+
作者:  Jiang, Mingkai;  Medlyn, Belinda E.;  Drake, John E.;  Duursma, Remko A.;  Anderson, Ian C.;  Barton, Craig V. M.;  Boer, Matthias M.;  Carrillo, Yolima;  Castaneda-Gomez, Laura;  Collins, Luke;  Crous, Kristine Y.;  De Kauwe, Martin G.;  dos Santos, Bruna M.;  Emmerson, Kathryn M.;  Facey, Sarah L.;  Gherlenda, Andrew N.;  Gimeno, Teresa E.;  Hasegawa, Shun;  Johnson, Scott N.;  Kannaste, Astrid;  Macdonald, Catriona A.;  Mahmud, Kashif;  Moore, Ben D.;  Nazaries, Loic;  Neilson, Elizabeth H. J.;  Nielsen, Uffe N.;  Niinemets, Ulo;  Noh, Nam Jin;  Ochoa-Hueso, Raul;  Pathare, Varsha S.;  Pendall, Elise;  Pihlblad, Johanna;  Pineiro, Juan;  Powell, Jeff R.;  Power, Sally A.;  Reich, Peter B.;  Renchon, Alexandre A.;  Riegler, Markus;  Rinnan, Riikka;  Rymer, Paul D.;  Salomon, Roberto L.;  Singh, Brajesh K.;  Smith, Benjamin;  Tjoelker, Mark G.;  Walker, Jennifer K. M.;  Wujeska-Klause, Agnieszka;  Yang, Jinyan;  Zaehle, Soenke;  Ellsworth, David S.
收藏  |  浏览/下载:46/0  |  提交时间:2020/07/03

Photoreceptor loss is the final common endpoint in most retinopathies that lead to irreversible blindness, and there are no effective treatments to restore vision(1,2). Chemical reprogramming of fibroblasts offers an opportunity to reverse vision loss  however, the generation of sensory neuronal subtypes such as photoreceptors remains a challenge. Here we report that the administration of a set of five small molecules can chemically induce the transformation of fibroblasts into rod photoreceptor-like cells. The transplantation of these chemically induced photoreceptor-like cells (CiPCs) into the subretinal space of rod degeneration mice (homozygous for rd1, also known as Pde6b) leads to partial restoration of the pupil reflex and visual function. We show that mitonuclear communication is a key determining factor for the reprogramming of fibroblasts into CiPCs. Specifically, treatment with these five compounds leads to the translocation of AXIN2 to the mitochondria, which results in the production of reactive oxygen species, the activation of NF-kappa B and the upregulation of Ascl1. We anticipate that CiPCs could have therapeutic potential for restoring vision.


A set of five small molecules can induce the transformation of fibroblasts into rod photoreceptor-like cells, which can partially restore pupil reflex and visual function when transplanted into a rod degeneration mouse model.


  
A calcineurin-Hoxb13 axis regulates growth mode of mammalian cardiomyocytes 期刊论文
NATURE, 2020, 582 (7811) : 271-+
作者:  Waszak, Sebastian M.;  Robinson, Giles W.;  Gudenas, Brian L.;  Smith, Kyle S.;  Forget, Antoine;  Kojic, Marija;  Garcia-Lopez, Jesus;  Hadley, Jennifer;  Hamilton, Kayla V.;  Indersie, Emilie;  Buchhalter, Ivo;  Kerssemakers, Jules;  Jaeger, Natalie;  Sharma, Tanvi;  Rausch, Tobias
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

Hoxb13 acts as a cofactor of Meis1 in regulating cardiomyocyte maturation and cell cycle, and knockout of both proteins enables regeneration of postnatal cardiac tissue in a mouse model of heart injury.


A major factor in the progression to heart failure in humans is the inability of the adult heart to repair itself after injury. We recently demonstrated that the early postnatal mammalian heart is capable of regeneration following injury through proliferation of preexisting cardiomyocytes(1,2) and that Meis1, a three amino acid loop extension (TALE) family homeodomain transcription factor, translocates to cardiomyocyte nuclei shortly after birth and mediates postnatal cell cycle arrest(3). Here we report that Hoxb13 acts as a cofactor of Meis1 in postnatal cardiomyocytes. Cardiomyocyte-specific deletion of Hoxb13 can extend the postnatal window of cardiomyocyte proliferation and reactivate the cardiomyocyte cell cycle in the adult heart. Moreover, adult Meis1-Hoxb13 double-knockout hearts display widespread cardiomyocyte mitosis, sarcomere disassembly and improved left ventricular systolic function following myocardial infarction, as demonstrated by echocardiography and magnetic resonance imaging. Chromatin immunoprecipitation with sequencing demonstrates that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and cell cycle. Finally, we show that the calcium-activated protein phosphatase calcineurin dephosphorylates Hoxb13 at serine-204, resulting in its nuclear localization and cell cycle arrest. These results demonstrate that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and proliferation and provide mechanistic insights into the link between hyperplastic and hypertrophic growth of cardiomyocytes.


  
The mutational landscape of normal human endometrial epithelium 期刊论文
NATURE, 2020, 580 (7805) : 640-+
作者:  Rogelj, Joeri;  Forster, Piers M.;  Kriegler, Elmar;  Smith, Christopher J.;  Seferian, Roland
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

All normal somatic cells are thought to acquire mutations, but understanding of the rates, patterns, causes and consequences of somatic mutations in normal cells is limited. The uterine endometrium adopts multiple physiological states over a lifetime and is lined by a gland-forming epithelium(1,2). Here, using whole-genome sequencing, we show that normal human endometrial glands are clonal cell populations with total mutation burdens that increase at about 29 base substitutions per year and that are many-fold lower than those of endometrial cancers. Normal endometrial glands frequently carry '  driver'  mutations in cancer genes, the burden of which increases with age and decreases with parity. Cell clones with drivers often originate during the first decades of life and subsequently progressively colonize the epithelial lining of the endometrium. Our results show that mutational landscapes differ markedly between normal tissues-perhaps shaped by differences in their structure and physiology-and indicate that the procession of neoplastic change that leads to endometrial cancer is initiated early in life.


Whole-genome sequencing of normal human endometrial glands shows that most are clonal cell populations and frequently carry cancer driver mutations that occur early in life, and that parity has a protective effect.


  
An engineered PET depolymerase to break down and recycle plastic bottles 期刊论文
NATURE, 2020, 580 (7802) : 216-+
作者:  Zhao, Evan Wenbo;  Liu, Tao;  Jonsson, Erlendur;  Lee, Jeongjae;  Temprano, Israel;  Jethwa, Rajesh B.;  Wang, Anqi;  Smith, Holly;  Carretero-Gonzalez, Javier;  Song, Qilei;  Grey, Clare P.
收藏  |  浏览/下载:86/0  |  提交时间:2020/07/03

Present estimates suggest that of the 359 million tons of plastics produced annually worldwide(1), 150-200 million tons accumulate in landfill or in the natural environment(2). Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging(3). The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties(4). Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units-which reduce chain mobility-PET is a polyester that is extremely difficult to hydrolyse(5). Several PET hydrolase enzymes have been reported, but show limited productivity(6,7). Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme(8,9) from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme(10)) and related improved variants(11-14) that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy.


Computer-aided engineering produces improvements to an enzyme that breaks down poly(ethylene terephthalate) (PET) into its constituent monomers, which are used to synthesize PET of near-petrochemical grade that can be further processed into bottles.


  
Early Holocene crop cultivation and landscape modification in Amazonia 期刊论文
NATURE, 2020, 581 (7807) : 190-+
作者:  Hendershot, J. Nicholas;  Smith, Jeffrey R.;  Anderson, Christopher B.;  Letten, Andrew D.;  Frishkoff, Luke O.;  Zook, Jim R.;  Fukami, Tadashi;  Daily, Gretchen C.
收藏  |  浏览/下载:32/0  |  提交时间:2020/07/03

The onset of plant cultivation is one of the most important cultural transitions in human history(1-4). Southwestern Amazonia has previously been proposed as an early centre of plant domestication, on the basis of molecular markers that show genetic similarities between domesticated plants and wild relatives(4-6). However, the nature of the early human occupation of southwestern Amazonia, and the history of plant cultivation in this region, are poorly understood. Here we document the cultivation of squash (Cucurbita sp.) at about 10,250 calibrated years before present (cal. yr bp), manioc (Manihot sp.) at about 10,350 cal. yr bp and maize (Zea mays) at about 6,850 cal. yr bp, in the Llanos de Moxos (Bolivia). We show that, starting at around 10,850 cal. yr bp, inhabitants of this region began to create a landscape that ultimately comprised approximately 4,700 artificial forest islands within a treeless, seasonally flooded savannah. Our results confirm that the Llanos de Moxos is a hotspot for early plant cultivation and demonstrate that-ever since their arrival in Amazonia-humans have markedly altered the landscape, with lasting repercussions for habitat heterogeneity and species conservation.


  
Estimating and tracking the remaining carbon budget for stringent climate targets (vol 571, pg 335, 2019) 期刊论文
NATURE, 2020, 580 (7802) : E4-E4
作者:  Zhao, Evan Wenbo;  Liu, Tao;  Jonsson, Erlendur;  Lee, Jeongjae;  Temprano, Israel;  Jethwa, Rajesh B.;  Wang, Anqi;  Smith, Holly;  Carretero-Gonzalez, Javier;  Song, Qilei;  Grey, Clare P.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  
Structural insight into arenavirus replication machinery 期刊论文
NATURE, 2020, 579 (7800) : 615-+
作者:  Zhang, Xiaheng;  Smith, Russell T.;  Le, Chip;  McCarver, Stefan J.;  Shireman, Brock T.;  Carruthers, Nicholas I.;  MacMillan, David W. C.
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/03

The authors provide high-resolution structures of two arenavirus polymerases, revealing that the active site of arenavirus polymerase is inherently switched on, without the requirement for allosteric activation by 5 '  -viral RNA, and that dimerization facilitates polymerase activity.


Arenaviruses can cause severe haemorrhagic fever and neurological diseases in humans and other animals, exemplified by Lassa mammarenavirus, Machupo mammarenavirus and lymphocytic choriomeningitis virus, posing great threats to public health(1-4). These viruses encode a large multi-domain RNA-dependent RNA polymerase for transcription and replication of the viral genome(5). Viral polymerases are one of the leading antiviral therapeutic targets. However, the structure of arenavirus polymerase is not yet known. Here we report the near-atomic resolution structures of Lassa and Machupo virus polymerases in both apo and promoter-bound forms. These structures display a similar overall architecture to influenza virus and bunyavirus polymerases but possess unique local features, including an arenavirus-specific insertion domain that regulates the polymerase activity. Notably, the ordered active site of arenavirus polymerase is inherently switched on, without the requirement for allosteric activation by 5 '  -viral RNA, which is a necessity for both influenza virus and bunyavirus polymerases(6,7). Moreover, dimerization could facilitate the polymerase activity. These findings advance our understanding of the mechanism of arenavirus replication and provide an important basis for developing antiviral therapeutics.


  
Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis 期刊论文
NATURE, 2020, 578 (7796) : 577-+
作者:  Bogomilov, M.;  Tsenov, R.;  Vankova-Kirilova, G.;  Song, Y. P.;  Tang, J. Y.;  Li, Z. H.;  Bertoni, R.;  Bonesini, M.;  Chignoli, F.;  Mazza, R.;  Palladino, V;  de Bari, A.;  Orestano, D.;  Tortora, L.;  Kuno, Y.;  Sakamoto, H.;  Sato, A.;  Ishimoto, S.;  Chung, M.;  Sung, C. K.;  Filthaut, F.;  Jokovic, D.;  Maletic, D.;  Savic, M.;  Jovancevic, N.;  Nikolov, J.;  Vretenar, M.;  Ramberger, S.;  Asfandiyarov, R.;  Blondel, A.;  Drielsma, F.;  Karadzhov, Y.;  Boyd, S.;  Greis, J. R.;  Lord, T.;  Pidcott, C.;  Taylor, I;  Charnley, G.;  Collomb, N.;  Dumbell, K.;  Gallagher, A.;  Grant, A.;  Griffiths, S.;  Hartnett, T.;  Martlew, B.;  Moss, A.;  Muir, A.;  Mullacrane, I;  Oates, A.;  Owens, P.;  Stokes, G.;  Warburton, P.;  White, C.;  Adams, D.;  Bayliss, V;  Boehm, J.;  Bradshaw, T. W.;  Brown, C.;  Courthold, M.;  Govans, J.;  Hills, M.;  Lagrange, J-B;  Macwaters, C.;  Nichols, A.;  Preece, R.;  Ricciardi, S.;  Rogers, C.;  Stanley, T.;  Tarrant, J.;  Tucker, M.;  Watson, S.;  Wilson, A.;  Bayes, R.;  Nugent, J. C.;  Soler, F. J. P.;  Chatzitheodoridis, G. T.;  Dick, A. J.;  Ronald, K.;  Whyte, C. G.;  Young, A. R.;  Gamet, R.;  Cooke, P.;  Blackmore, V. J.;  Colling, D.;  Dobbs, A.;  Dornan, P.;  Franchini, P.;  Hunt, C.;  Jurj, P. B.;  Kurup, A.;  Long, K.;  Martyniak, J.;  Middleton, S.;  Pasternak, J.;  Uchida, M. A.;  Cobb, J. H.;  Booth, C. N.;  Hodgson, P.;  Langlands, J.;  Overton, E.;  Pec, V;  Smith, P. J.;  Wilbur, S.;  Ellis, M.;  Gardener, R. B. S.;  Kyberd, P.;  Nebrensky, J. J.;  DeMello, A.;  Gourlay, S.;  Lambert, A.;  Li, D.;  Luo, T.;  Prestemon, S.;  Virostek, S.;  Palmer, M.;  Witte, H.;  Adey, D.;  Bross, A. D.;  Bowring, D.;  Liu, A.;  Neuffer, D.;  Popovic, M.;  Rubinov, P.;  Freemire, B.;  Hanlet, P.;  Kaplan, D. M.;  Mohayai, T. A.;  Rajaram, D.;  Snopok, P.;  Torun, Y.;  Cremaldi, L. M.;  Sanders, D. A.;  Summers, D. J.;  Coney, L. R.;  Hanson, G. G.;  Heidt, C.
收藏  |  浏览/下载:35/0  |  提交时间:2020/07/03

Hydrogen peroxide (H2O2) is a major reactive oxygen species in unicellular and multicellular organisms, and is produced extracellularly in response to external stresses and internal cues(1-4). H2O2 enters cells through aquaporin membrane proteins and covalently modifies cytoplasmic proteins to regulate signalling and cellular processes. However, whether sensors for H2O2 also exist on the cell surface remains unknown. In plant cells, H2O2 triggers an influx of Ca2+ ions, which is thought to be involved in H2O2 sensing and signalling. Here, by using forward genetic screens based on Ca2+ imaging, we isolated hydrogen-peroxide-induced Ca(2+)increases (hpca) mutants in Arabidopsis, and identified HPCA1 as a leucine-rich-repeat receptor kinase belonging to a previously uncharacterized subfamily that features two extra pairs of cysteine residues in the extracellular domain. HPCA1 is localized to the plasma membrane and is activated by H2O2 via covalent modification of extracellular cysteine residues, which leads to autophosphorylation of HPCA1. HPCA1 mediates H2O2-induced activation of Ca2+ channels in guard cells and is required for stomatal closure. Our findings help to identify how the perception of extracellular H2O2 is integrated with responses to various external stresses and internal cues in plants, and have implications for the design of crops with enhanced fitness.


HPCA1, a member of a previously uncharacterized subfamily of leucine-rich-repeat receptor-like kinases, is the hydrogen-peroxide sensor at the plasma membrane in Arabidopsis.