GSTDTAP

浏览/检索结果: 共9条,第1-9条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Quantum computational advantage using photons 期刊论文
Science, 2020
作者:  Han-Sen Zhong;  Hui Wang;  Yu-Hao Deng;  Ming-Cheng Chen;  Li-Chao Peng;  Yi-Han Luo;  Jian Qin;  Dian Wu;  Xing Ding;  Yi Hu;  Peng Hu;  Xiao-Yan Yang;  Wei-Jun Zhang;  Hao Li;  Yuxuan Li;  Xiao Jiang;  Lin Gan;  Guangwen Yang;  Lixing You;  Zhen Wang;  Li Li;  Nai-Le Liu;  Chao-Yang Lu;  Jian-Wei Pan
收藏  |  浏览/下载:29/0  |  提交时间:2020/12/22
Chemical vapor deposition of layered two-dimensional MoSi2N4 materials 期刊论文
Science, 2020
作者:  Yi-Lun Hong;  Zhibo Liu;  Lei Wang;  Tianya Zhou;  Wei Ma;  Chuan Xu;  Shun Feng;  Long Chen;  Mao-Lin Chen;  Dong-Ming Sun;  Xing-Qiu Chen;  Hui-Ming Cheng;  Wencai Ren
收藏  |  浏览/下载:26/0  |  提交时间:2020/08/18
Millennial-scale hydroclimate control of tropical soil carbon storage 期刊论文
NATURE, 2020, 581 (7806) : 63-+
作者:  Lam, Tommy Tsan-Yuk;  Jia, Na;  Zhang, Ya-Wei;  Shum, Marcus Ho-Hin;  Jiang, Jia-Fu;  Zhu, Hua-Chen;  Tong, Yi-Gang;  Shi, Yong-Xia;  Ni, Xue-Bing;  Liao, Yun-Shi;  Li, Wen-Juan;  Jiang, Bao-Gui;  Wei, Wei;  Yuan, Ting-Ting;  Zheng, Kui;  Cui, Xiao-Ming;  Li, Jie;  Pei, Guang-Qian
收藏  |  浏览/下载:25/0  |  提交时间:2020/05/13

Over the past 18,000 years, the residence time and amount of soil carbon stored in the Ganges-Brahmaputra basin have been controlled by the intensity of Indian Summer Monsoon rainfall, with greater carbon destabilization during wetter, warmer conditions.


The storage of organic carbon in the terrestrial biosphere directly affects atmospheric concentrations of carbon dioxide over a wide range of timescales. Within the terrestrial biosphere, the magnitude of carbon storage can vary in response to environmental perturbations such as changing temperature or hydroclimate(1), potentially generating feedback on the atmospheric inventory of carbon dioxide. Although temperature controls the storage of soil organic carbon at mid and high latitudes(2,3), hydroclimate may be the dominant driver of soil carbon persistence in the tropics(4,5)  however, the sensitivity of tropical soil carbon turnover to large-scale hydroclimate variability remains poorly understood. Here we show that changes in Indian Summer Monsoon rainfall have controlled the residence time of soil carbon in the Ganges-Brahmaputra basin over the past 18,000 years. Comparison of radiocarbon ages of bulk organic carbon and terrestrial higher-plant biomarkers with co-located palaeohydrological records(6) reveals a negative relationship between monsoon rainfall and soil organic carbon stocks on a millennial timescale. Across the deglaciation period, a depletion of basin-wide soil carbon stocks was triggered by increasing rainfall and associated enhanced soil respiration rates. Our results suggest that future hydroclimate changes in tropical regions are likely to accelerate soil carbon destabilization, further increasing atmospheric carbon dioxide concentrations.


  
Self-preservation strategy for approaching global warming targets in the post-Paris Agreement era 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Wei, Yi-Ming;  Han, Rong;  Wang, Ce;  Yu, Biying;  Liang, Qiao-Mei;  Yuan, Xiao-Chen;  Chang, Junjie;  Zhao, Qingyu;  Liao, Hua;  Tang, Baojun;  Yan, Jinyue;  Cheng, Lijing;  Yang, Zili
收藏  |  浏览/下载:7/0  |  提交时间:2020/05/13
How to balance China's sustainable development goals through industrial restructuring: a multi-regional input-output optimization of the employment-energy-water-emissions nexus 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (3)
作者:  Wang, Jiayu;  Wang, Ke;  Wei, Yi-Ming
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/02
scenario analysis  synergy  trade-offs  multi-regional input-output analysis  multi-objective optimization  
The molecular basis for sugar import in malaria parasites 期刊论文
NATURE, 2020, 578 (7794) : 321-+
作者:  Zhao, Peishen;  Liang, Yi-Lynn;  Belousoff, Matthew J.;  Deganutti, Giuseppe;  Fletcher, Madeleine M.;  Willard, Francis S.;  Bell, Michael G.;  Christe, Michael E.;  Sloop, Kyle W.;  Inoue, Asuka;  Truong, Tin T.;  Clydesdale, Lachlan;  Furness, Sebastian G. B.;  Christopoulos, Arthur;  Wang, Ming-Wei;  Miller, Laurence J.;  Reynolds, Christopher A.;  Danev, Radostin;  Sexton, Patrick M.;  Wootten, Denise
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/03

Elucidating the mechanism of sugar import requires a molecular understanding of how transporters couple sugar binding and gating events. Whereas mammalian glucose transporters (GLUTs) are specialists(1), the hexose transporter from the malaria parasite Plasmodium falciparum PfHT1(2,3) has acquired the ability to transport both glucose and fructose sugars as efficiently as the dedicated glucose (GLUT3) and fructose (GLUT5) transporters. Here, to establish the molecular basis of sugar promiscuity in malaria parasites, we determined the crystal structure of PfHT1 in complex with d-glucose at a resolution of 3.6 angstrom. We found that the sugar-binding site in PfHT1 is very similar to those of the distantly related GLUT3 and GLUT5 structures(4,5). Nevertheless, engineered PfHT1 mutations made to match GLUT sugar-binding sites did not shift sugar preferences. The extracellular substrate-gating helix TM7b in PfHT1 was positioned in a fully occluded conformation, providing a unique glimpse into how sugar binding and gating are coupled. We determined that polar contacts between TM7b and TM1 (located about 15 angstrom from d-glucose) are just as critical for transport as the residues that directly coordinate d-glucose, which demonstrates a strong allosteric coupling between sugar binding and gating. We conclude that PfHT1 has achieved substrate promiscuity not by modifying its sugar-binding site, but instead by evolving substrate-gating dynamics.


Crystal structure of the Plasmodium falciparum hexose transporter PfHT1 reveals the molecular basis of its ability to transport multiple types of sugar as efficiently as the dedicated mammalian glucose and fructose transporters.


  
Processive extrusion of polypeptide loops by a Hsp100 disaggregase 期刊论文
NATURE, 2020, 578 (7794) : 317-+
作者:  Zhao, Peishen;  Liang, Yi-Lynn;  Belousoff, Matthew J.;  Deganutti, Giuseppe;  Fletcher, Madeleine M.;  Willard, Francis S.;  Bell, Michael G.;  Christe, Michael E.;  Sloop, Kyle W.;  Inoue, Asuka;  Truong, Tin T.;  Clydesdale, Lachlan;  Furness, Sebastian G. B.;  Christopoulos, Arthur;  Wang, Ming-Wei;  Miller, Laurence J.;  Reynolds, Christopher A.;  Danev, Radostin;  Sexton, Patrick M.;  Wootten, Denise
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

The ability to reverse protein aggregation is vital to cells(1,2). Hsp100 disaggregases such as ClpB and Hsp104 are proposed to catalyse this reaction by translocating polypeptide loops through their central pore(3,4). This model of disaggregation is appealing, as it could explain how polypeptides entangled within aggregates can be extracted and subsequently refolded with the assistance of Hsp70(4,5). However, the model is also controversial, as the necessary motor activity has not been identified(6-8) and recent findings indicate non-processive mechanisms such as entropic pulling or Brownian ratcheting(9,10). How loop formation would be accomplished is also obscure. Indeed, cryo-electron microscopy studies consistently show single polypeptide strands in the Hsp100 pore(11,12). Here, by following individual ClpB-substrate complexes in real time, we unambiguously demonstrate processive translocation of looped polypeptides. We integrate optical tweezers with fluorescent-particle tracking to show that ClpB translocates both arms of the loop simultaneously and switches to single-arm translocation when encountering obstacles. ClpB is notably powerful and rapid  it exerts forces of more than 50 pN at speeds of more than 500 residues per second in bursts of up to 28 residues. Remarkably, substrates refold while exiting the pore, analogous to co-translational folding. Our findings have implications for protein-processing phenomena including ubiquitin-mediated remodelling by Cdc48 (or its mammalian orthologue p97)(13) and degradation by the 26S proteasome(14).


A combination of optical tweezers and fluorescent-particle tracking is used to dissect the dynamics of the Hsp100 disaggregase ClpB, and show that the processive extrusion of polypeptide loops is the mechanistic basis of its activity.


  
Activation of the GLP-1 receptor by a non-peptidic agonist 期刊论文
NATURE, 2020, 577 (7790) : 432-+
作者:  Zhao, Peishen;  Liang, Yi-Lynn;  Belousoff, Matthew J.;  Deganutti, Giuseppe;  Fletcher, Madeleine M.;  Willard, Francis S.;  Bell, Michael G.;  Christe, Michael E.;  Sloop, Kyle W.;  Inoue, Asuka;  Truong, Tin T.;  Clydesdale, Lachlan;  Furness, Sebastian G. B.;  Christopoulos, Arthur;  Wang, Ming-Wei;  Miller, Laurence J.;  Reynolds, Christopher A.;  Danev, Radostin;  Sexton, Patrick M.;  Wootten, Denise
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

Class B G-protein-coupled receptors are major targets for the treatment of chronic diseases, including diabetes and obesity(1). Structures of active receptors reveal peptide agonists engage deep within the receptor core, leading to an outward movement of extracellular loop 3 and the tops of transmembrane helices 6 and 7, an inward movement of transmembrane helix 1, reorganization of extracellular loop 2 and outward movement of the intracellular side of transmembrane helix 6, resulting in G-protein interaction and activation(2-6). Here we solved the structure of a non-peptide agonist, TT-OAD2, bound to the glucagon-like peptide-1 (GLP-1) receptor. Our structure identified an unpredicted non-peptide agonist-binding pocket in which reorganization of extracellular loop 3 and transmembrane helices 6 and 7 manifests independently of direct ligand interaction within the deep transmembrane domain pocket. TT-OAD2 exhibits biased agonism, and kinetics of G-protein activation and signalling that are distinct from peptide agonists. Within the structure, TT-OAD2 protrudes beyond the receptor core to interact with the lipid or detergent, providing an explanation for the distinct activation kinetics that may contribute to the clinical efficacy of this compound series. This work alters our understanding of the events that drive the activation of class B receptors.


  
Convective Transition Statistics over Tropical Oceans for Climate Model Diagnostics: GCM Evaluation 期刊论文
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2020, 77 (1) : 379-403
作者:  Kuo, Yi-Hung;  Neelin, J. David;  Chen, Chih-Chieh;  Chen, Wei-Ting;  Donner, Leo J.;  Gettelman, Andrew;  Jiang, Xianan;  Kuo, Kuan-Ting;  Maloney, Eric;  Mechoso, Carlos R.;  Ming, Yi;  Schiro, Kathleen A.;  Seman, Charles J.;  Wu, Chien-Ming;  Zhao, Ming
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/02
Climate models  Convective parameterization  Diagnostics  Model evaluation  performance