GSTDTAP

浏览/检索结果: 共6条,第1-6条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet 期刊论文
Proceedings of the National Academy of Sciences, 2020
作者:  Tao Su;  Robert A. Spicer;  Fei-Xiang Wu;  Alexander Farnsworth;  Jian Huang;  Cédric Del Rio;  Tao Deng;  Lin Ding;  Wei-Yu-Dong Deng;  Yong-Jiang Huang;  Alice Hughes;  Lin-Bo Jia;  Jian-Hua Jin;  Shu-Feng Li;  Shui-Qing Liang;  Jia Liu;  Xiao-Yan Liu;  Sarah Sherlock;  Teresa Spicer;  Gaurav Srivastava;  He Tang;  Paul Valdes;  Teng-Xiang Wang;  Mike Widdowson;  Meng-Xiao Wu;  Yao-Wu Xing;  Cong-Li Xu;  Jian Yang;  Cong Zhang;  Shi-Tao Zhang;  Xin-Wen Zhang;  Fan Zhao;  Zhe-Kun Zhou
收藏  |  浏览/下载:13/0  |  提交时间:2020/12/22
Key rules of life and the fading cryosphere: Impacts in alpine lakes and streams 期刊论文
Global Change Biology, 2020
作者:  James J. Elser;  Chenxi Wu;  Angé;  lica L. Gonzá;  lez;  Daniel H. Shain;  Heidi J. Smith;  Ruben Sommaruga;  Craig E. Williamson;  Janice Brahney;  Scott Hotaling;  Joseph Vanderwall;  Jinlei Yu;  Vladimir Aizen;  Elena Aizen;  Tom J. Battin;  Roberto Camassa;  Xiu Feng;  Hongchen Jiang;  Lixin Lu;  John J. Qu;  Ze Ren;  Jun Wen;  Lijuan Wen;  H. Arthur Woods;  Xiong Xiong;  Jun Xu;  Gongliang Yu;  Joel T. Harper;  Jasmine E. Saros
收藏  |  浏览/下载:8/0  |  提交时间:2020/10/26
Ancient DNA indicates human population shifts and admixture in northern and southern China 期刊论文
Science, 2020
作者:  Melinda A. Yang;  Xuechun Fan;  Bo Sun;  Chungyu Chen;  Jianfeng Lang;  Ying-Chin Ko;  Cheng-hwa Tsang;  Hunglin Chiu;  Tianyi Wang;  Qingchuan Bao;  Xiaohong Wu;  Mateja Hajdinjak;  Albert Min-Shan Ko;  Manyu Ding;  Peng Cao;  Ruowei Yang;  Feng Liu;  Birgit Nickel;  Qingyan Dai;  Xiaotian Feng;  Lizhao Zhang;  Chengkai Sun;  Chao Ning;  Wen Zeng;  Yongsheng Zhao;  Ming Zhang;  Xing Gao;  Yinqiu Cui;  David Reich;  Mark Stoneking;  Qiaomei Fu
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/21
Sustainable production of value-added carbon nanomaterials from biomass pyrolysis 期刊论文
NATURE SUSTAINABILITY, 2020
作者:  Zhang, Shun;  Jiang, Shun-Feng;  Huang, Bao-Cheng;  Shen, Xian-Cheng;  Chen, Wen-Jing;  Zhou, Tian-Pei;  Cheng, Hui-Yuan;  Cheng, Bin-Hai;  Wu, Chang-Zheng;  Li, Wen-Wei;  Jiang, Hong;  Yu, Han-Qing
收藏  |  浏览/下载:20/0  |  提交时间:2020/05/20
Impaired cell fate through gain-of-function mutations in a chromatin reader 期刊论文
NATURE, 2020, 577 (7788) : 121-+
作者:  Wan, Liling;  Chong, Shasha;  Xuan, Fan;  Liang, Angela;  Cui, Xiaodong;  Gates, Leah;  Carroll, Thomas S.;  Li, Yuanyuan;  Feng, Lijuan;  Chen, Guochao;  Wang, Shu-Ping;  Ortiz, Michael V.;  Daley, Sara K.;  Wang, Xiaolu;  Xuan, Hongwen;  Kentsis, Alex;  Muir, Tom W.;  Roeder, Robert G.;  Li, Haitao;  Li, Wei;  Tjian, Robert;  Wen, Hong;  Allis, C. David
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Modifications of histone proteins have essential roles in normal development and human disease. Recognition of modified histones by '  reader'  proteins is a key mechanism that mediates the function of histone modifications, but how the dysregulation of these readers might contribute to disease remains poorly understood. We previously identified the ENL protein as a reader of histone acetylation via its YEATS domain, linking it to the expression of cancer-driving genes in acute leukaemia1. Recurrent hotspot mutations have been found in the ENL YEATS domain in Wilms tumour2,3, the most common type of paediatric kidney cancer. Here we show, using human and mouse cells, that these mutations impair cell-fate regulation by conferring gain-of-function in chromatin recruitment and transcriptional control. ENL mutants induce gene-expression changes that favour a premalignant cell fate, and, in an assay for nephrogenesis using murine cells, result in undifferentiated structures resembling those observed in human Wilms tumour. Mechanistically, although bound to largely similar genomic loci as the wild-type protein, ENL mutants exhibit increased occupancy at a subset of targets, leading to a marked increase in the recruitment and activity of transcription elongation machinery that enforces active transcription from target loci. Furthermore, ectopically expressed ENL mutants exhibit greater self-association and form discrete and dynamic nuclear puncta that are characteristic of biomolecular hubs consisting of local high concentrations of regulatory factors. Such mutation-driven ENL self-association is functionally linked to enhanced chromatin occupancy and gene activation. Collectively, our findings show that hotspot mutations in a chromatinreader domain drive self-reinforced recruitment, derailing normal cell-fate control during development and leading to an oncogenic outcome.


  
Patterns of somatic structural variation in human cancer genomes 期刊论文
NATURE, 2020, 578 (7793) : 112-+
作者:  Wan, Liling;  Chong, Shasha;  Xuan, Fan;  Liang, Angela;  Cui, Xiaodong;  Gates, Leah;  Carroll, Thomas S.;  Li, Yuanyuan;  Feng, Lijuan;  Chen, Guochao;  Wang, Shu-Ping;  Ortiz, Michael V.;  Daley, Sara K.;  Wang, Xiaolu;  Xuan, Hongwen;  Kentsis, Alex;  Muir, Tom W.;  Roeder, Robert G.;  Li, Haitao;  Li, Wei;  Tjian, Robert;  Wen, Hong;  Allis, C. David
收藏  |  浏览/下载:36/0  |  提交时间:2020/07/03

A key mutational process in cancer is structural variation, in which rearrangements delete, amplify or reorder genomic segments that range in size from kilobases to whole chromosomes(1-7). Here we develop methods to group, classify and describe somatic structural variants, using data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumour types(8). Sixteen signatures of structural variation emerged. Deletions have a multimodal size distribution, assort unevenly across tumour types and patients, are enriched in late-replicating regions and correlate with inversions. Tandem duplications also have a multimodal size distribution, but are enriched in early-replicating regions-as are unbalanced translocations. Replication-based mechanisms of rearrangement generate varied chromosomal structures with low-level copy-number gains and frequent inverted rearrangements. One prominent structure consists of 2-7 templates copied from distinct regions of the genome strung together within one locus. Such cycles of templated insertions correlate with tandem duplications, and-in liver cancerfrequently activate the telomerase gene TERT. A wide variety of rearrangement processes are active in cancer, which generate complex configurations of the genome upon which selection can act.