GSTDTAP

浏览/检索结果: 共12条,第1-10条 帮助

限定条件                            
已选(0)清除 条数/页:   排序方式:
Identification of Integrator-PP2A complex (INTAC), an RNA polymerase II phosphatase 期刊论文
Science, 2020
作者:  Hai Zheng;  Yilun Qi;  Shibin Hu;  Xuan Cao;  Congling Xu;  Zhinang Yin;  Xizi Chen;  Yan Li;  Weida Liu;  Jie Li;  Jiawei Wang;  Gang Wei;  Kaiwei Liang;  Fei Xavier Chen;  Yanhui Xu
收藏  |  浏览/下载:11/0  |  提交时间:2020/11/30
Rational design of layered oxide materials for sodium-ion batteries 期刊论文
Science, 2020
作者:  Chenglong Zhao;  Qidi Wang;  Zhenpeng Yao;  Jianlin Wang;  Benjamín Sánchez-Lengeling;  Feixiang Ding;  Xingguo Qi;  Yaxiang Lu;  Xuedong Bai;  Baohua Li;  Hong Li;  Alán Aspuru-Guzik;  Xuejie Huang;  Claude Delmas;  Marnix Wagemaker;  Liquan Chen;  Yong-Sheng Hu
收藏  |  浏览/下载:13/0  |  提交时间:2020/11/09
Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy 期刊论文
Science, 2020
作者:  Hongjing Gu;  Qi Chen;  Guan Yang;  Lei He;  Hang Fan;  Yong-Qiang Deng;  Yanxiao Wang;  Yue Teng;  Zhongpeng Zhao;  Yujun Cui;  Yuchang Li;  Xiao-Feng Li;  Jiangfan Li;  Na-Na Zhang;  Xiaolan Yang;  Shaolong Chen;  Yan Guo;  Guangyu Zhao;  Xiliang Wang;  De-Yan Luo;  Hui Wang;  Xiao Yang;  Yan Li;  Gencheng Han;  Yuxian He;  Xiaojun Zhou;  Shusheng Geng;  Xiaoli Sheng;  Shibo Jiang;  Shihui Sun;  Cheng-Feng Qin;  Yusen Zhou
收藏  |  浏览/下载:17/0  |  提交时间:2020/09/30
Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody 期刊论文
Science, 2020
作者:  Zhe Lv;  Yong-Qiang Deng;  Qing Ye;  Lei Cao;  Chun-Yun Sun;  Changfa Fan;  Weijin Huang;  Shihui Sun;  Yao Sun;  Ling Zhu;  Qi Chen;  Nan Wang;  Jianhui Nie;  Zhen Cui;  Dandan Zhu;  Neil Shaw;  Xiao-Feng Li;  Qianqian Li;  Liangzhi Xie;  Youchun Wang;  Zihe Rao;  Cheng-Feng Qin;  Xiangxi Wang
收藏  |  浏览/下载:17/0  |  提交时间:2020/09/22
A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2 期刊论文
Science, 2020
作者:  Yan Wu;  Feiran Wang;  Chenguang Shen;  Weiyu Peng;  Delin Li;  Cheng Zhao;  Zhaohui Li;  Shihua Li;  Yuhai Bi;  Yang Yang;  Yuhuan Gong;  Haixia Xiao;  Zheng Fan;  Shuguang Tan;  Guizhen Wu;  Wenjie Tan;  Xuancheng Lu;  Changfa Fan;  Qihui Wang;  Yingxia Liu;  Chen Zhang;  Jianxun Qi;  George Fu Gao;  Feng Gao;  Lei Liu
收藏  |  浏览/下载:11/0  |  提交时间:2020/06/16
Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Wang, Junfeng;  Li, Jingyi;  Ye, Jianhuai;  Zhao, Jian;  Wu, Yangzhou;  Hu, Jianlin;  Liu, Dantong;  Nie, Dongyang;  Shen, Fuzhen;  Huang, Xiangpeng;  Huang, Dan Dan;  Ji, Dongsheng;  Sun, Xu;  Xu, Weiqi;  Guo, Jianping;  Song, Shaojie;  Qin, Yiming;  Liu, Pengfei;  Turner, Jay R.;  Lee, Hyun Chul;  Hwang, Sungwoo;  Liao, Hong;  Martin, Scot T.;  Zhang, Qi;  Chen, Mindong;  Sun, Yele;  Ge, Xinlei;  Jacob, Daniel J.
收藏  |  浏览/下载:18/0  |  提交时间:2020/06/09
Strain engineering and epitaxial stabilization of halide perovskites 期刊论文
NATURE, 2020, 577 (7789) : 209-+
作者:  Chen, Yimu;  Lei, Yusheng;  Li, Yuheng;  Yu, Yugang;  Cai, Jinze;  Chiu, Ming-Hui;  Rao, Rahul;  Gu, Yue;  Wang, Chunfeng;  Choi, Woojin;  Hu, Hongjie;  Wang, Chonghe;  Li, Yang;  Song, Jiawei;  Zhang, Jingxin;  Qi, Baiyan;  Lin, Muyang;  Zhang, Zhuorui;  Islam, Ahmad E.;  Maruyama, Benji;  Dayeh, Shadi;  Li, Lain-Jong;  Yang, Kesong;  Lo, Yu-Hwa;  Xu, Sheng
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

Strain engineering is a powerful tool with which to enhance semiconductor device performance(1,2). Halide perovskites have shown great promise in device applications owing to their remarkable electronic and optoelectronic properties(3-5). Although applying strain to halide perovskites has been frequently attempted, including using hydrostatic pressurization(6-8), electrostriction(9), annealing(10-12), van der Waals force(13), thermal expansion mismatch(14), and heat-induced substrate phase transition(15), the controllable and device-compatible strain engineering of halide perovskites by chemical epitaxy remains a challenge, owing to the absence of suitable lattice-mismatched epitaxial substrates. Here we report the strained epitaxial growth of halide perovskite single-crystal thin films on lattice-mismatched halide perovskite substrates. We investigated strain engineering of a-formamidinium lead iodide (alpha-FAPbI(3)) using both experimental techniques and theoretical calculations. By tailoring the substrate composition-and therefore its lattice parameter-a compressive strain as high as 2.4 per cent is applied to the epitaxial alpha-FAPbI(3) thin film. We demonstrate that this strain effectively changes the crystal structure, reduces the bandgap and increases the hole mobility of alpha-FAPbI(3). Strained epitaxy is also shown to have a substantial stabilization effect on the alpha-FAPbI(3) phase owing to the synergistic effects of epitaxial stabilization and strain neutralization. As an example, strain engineering is applied to enhance the performance of an alpha-FAPbI(3)-based photodetector.


  
Structure and mechanism of human diacylglycerol O-acyltransferase 1 期刊论文
NATURE, 2020, 581 (7808) : 329-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

The structure of human diacylglycerol O-acyltransferase 1, a membrane protein that synthesizes triacylglycerides, is solved with cryo-electron microscopy, providing insight into its function and mechanism of enzymatic activity.


Diacylglycerol O-acyltransferase 1 (DGAT1) synthesizes triacylglycerides and is required for dietary fat absorption and fat storage in humans(1). DGAT1 belongs to the membrane-bound O-acyltransferase (MBOAT) superfamily, members of which are found in all kingdoms of life and are involved in the acylation of lipids and proteins(2,3). How human DGAT1 and other mammalian members of the MBOAT family recognize their substrates and catalyse their reactions is unknown. The absence of three-dimensional structures also hampers rational targeting of DGAT1 for therapeutic purposes. Here we present the cryo-electron microscopy structure of human DGAT1 in complex with an oleoyl-CoA substrate. Each DGAT1 protomer has nine transmembrane helices, eight of which form a conserved structural fold that we name the MBOAT fold. The MBOAT fold in DGAT1 forms a hollow chamber in the membrane that encloses highly conserved catalytic residues. The chamber has separate entrances for each of the two substrates, fatty acyl-CoA and diacylglycerol. DGAT1 can exist as either a homodimer or a homotetramer and the two forms have similar enzymatic activity. The N terminus of DGAT1 interacts with the neighbouring protomer and these interactions are required for enzymatic activity.


  
The online competition between pro- and anti-vaccination views 期刊论文
NATURE, 2020, 582 (7811) : 230-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Insights into the interactions between pro- and anti-vaccination clusters on Facebook can enable policies and approaches that attempt to interrupt the shift to anti-vaccination views and persuade undecided individuals to adopt a pro-vaccination stance.


Distrust in scientific expertise(1-14) is dangerous. Opposition to vaccination with a future vaccine against SARS-CoV-2, the causal agent of COVID-19, for example, could amplify outbreaks(2-4), as happened for measles in 2019(5,6). Homemade remedies(7,8) and falsehoods are being shared widely on the Internet, as well as dismissals of expert advice(9-11). There is a lack of understanding about how this distrust evolves at the system level(13,14). Here we provide a map of the contention surrounding vaccines that has emerged from the global pool of around three billion Facebook users. Its core reveals a multi-sided landscape of unprecedented intricacy that involves nearly 100 million individuals partitioned into highly dynamic, interconnected clusters across cities, countries, continents and languages. Although smaller in overall size, anti-vaccination clusters manage to become highly entangled with undecided clusters in the main online network, whereas pro-vaccination clusters are more peripheral. Our theoretical framework reproduces the recent explosive growth in anti-vaccination views, and predicts that these views will dominate in a decade. Insights provided by this framework can inform new policies and approaches to interrupt this shift to negative views. Our results challenge the conventional thinking about undecided individuals in issues of contention surrounding health, shed light on other issues of contention such as climate change(11), and highlight the key role of network cluster dynamics in multi-species ecologies(15).


  
Notch signalling drives synovial fibroblast identity and arthritis pathology 期刊论文
NATURE, 2020, 582 (7811) : 259-+
作者:  Han, Xiaoping;  Zhou, Ziming;  Fei, Lijiang;  Sun, Huiyu;  Wang, Renying;  Chen, Yao;  Chen, Haide;  Wang, Jingjing;  Tang, Huanna;  Ge, Wenhao;  Zhou, Yincong;  Ye, Fang;  Jiang, Mengmeng;  Wu, Junqing;  Xiao, Yanyu;  Jia, Xiaoning;  Zhang, Tingyue;  Ma, Xiaojie;  Zhang, Qi;  Bai, Xueli;  Lai, Shujing;  Yu, Chengxuan;  Zhu, Lijun;  Lin, Rui;  Gao, Yuchi;  Wang, Min;  Wu, Yiqing;  Zhang, Jianming;  Zhan, Renya;  Zhu, Saiyong;  Hu, Hailan;  Wang, Changchun;  Chen, Ming;  Huang, He;  Liang, Tingbo;  Chen, Jianghua;  Wang, Weilin;  Zhang, Dan;  Guo, Guoji
收藏  |  浏览/下载:43/0  |  提交时间:2020/07/03

NOTCH3 signalling is shown to be the underlying driver of the differentiation and expansion of a subset of synovial fibroblasts implicated in the pathogenesis of rheumatoid arthritis.


The synovium is a mesenchymal tissue composed mainly of fibroblasts, with a lining and sublining that surround the joints. In rheumatoid arthritis the synovial tissue undergoes marked hyperplasia, becomes inflamed and invasive, and destroys the joint(1,2). It has recently been shown that a subset of fibroblasts in the sublining undergoes a major expansion in rheumatoid arthritis that is linked to disease activity(3-5)  however, the molecular mechanism by which these fibroblasts differentiate and expand is unknown. Here we identify a critical role for NOTCH3 signalling in the differentiation of perivascular and sublining fibroblasts that express CD90 (encoded by THY1). Using single-cell RNA sequencing and synovial tissue organoids, we found that NOTCH3 signalling drives both transcriptional and spatial gradients-emanating from vascular endothelial cells outwards-in fibroblasts. In active rheumatoid arthritis, NOTCH3 and Notch target genes are markedly upregulated in synovial fibroblasts. In mice, the genetic deletion of Notch3 or the blockade of NOTCH3 signalling attenuates inflammation and prevents joint damage in inflammatory arthritis. Our results indicate that synovial fibroblasts exhibit a positional identity that is regulated by endothelium-derived Notch signalling, and that this stromal crosstalk pathway underlies inflammation and pathology in inflammatory arthritis.