GSTDTAP

浏览/检索结果: 共11条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Economics in the Age of COVID-19 期刊论文
NATURE, 2020, 581 (7809) : 375-377
作者:  Yin, Juan;  Li, Yu-Huai;  Liao, Sheng-Kai;  Yang, Meng;  Cao, Yuan;  Zhang, Liang;  Ren, Ji-Gang;  Cai, Wen-Qi;  Liu, Wei-Yue;  Li, Shuang-Lin;  Shu, Rong;  Huang, Yong-Mei;  Deng, Lei;  Li, Li;  Zhang, Qiang;  Liu, Nai-Le
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/03

Breakneck triage nails many diagnoses, but deeper treatment is needed.


Breakneck triage nails many diagnoses, but deeper treatment is needed.


  
Proton-assisted growth of ultra-flat graphene films 期刊论文
NATURE, 2020, 577 (7789) : 204-+
作者:  Yuan, Guowen;  Lin, Dongjing;  Wang, Yong;  Huang, Xianlei;  Chen, Wang;  Xie, Xuedong;  Zong, Junyu;  Yuan, Qian-Qian;  Zheng, Hang;  Wang, Di;  Xu, Jie;  Li, Shao-Chun;  Zhang, Yi;  Sun, Jian;  Xi, Xiaoxiang;  Gao, Libo
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Graphene films grown by chemical vapour deposition have unusual physical and chemical properties that offer promise for applications such as flexible electronics and high-frequency transistors(1-10). However, wrinkles invariably form during growth because of the strong coupling to the substrate, and these limit the large-scale homogeneity of the film(1-4,11,12). Here we develop a proton-assisted method of chemical vapour deposition to grow ultra-flat graphene films that are wrinkle-free. Our method of proton penetration(13-17) and recombination to form hydrogen can also reduce the wrinkles formed during traditional chemical vapour deposition of graphene. Some of the wrinkles disappear entirely, owing to the decoupling of van der Waals interactions and possibly an increase in distance from the growth surface. The electronic band structure of the as-grown graphene films shows a V-shaped Dirac cone and a linear dispersion relation within the atomic plane or across an atomic step, confirming the decoupling from the substrate. The ultra-flat nature of the graphene films ensures that their surfaces are easy to clean after a wet transfer process. A robust quantum Hall effect appears even at room temperature in a device with a linewidth of 100 micrometres. Graphene films grown by proton-assisted chemical vapour deposition should largely retain their intrinsic performance, and our method should be easily generalizable to other nanomaterials for strain and doping engineering.


  
Structure and mechanism of human diacylglycerol O-acyltransferase 1 期刊论文
NATURE, 2020, 581 (7808) : 329-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

The structure of human diacylglycerol O-acyltransferase 1, a membrane protein that synthesizes triacylglycerides, is solved with cryo-electron microscopy, providing insight into its function and mechanism of enzymatic activity.


Diacylglycerol O-acyltransferase 1 (DGAT1) synthesizes triacylglycerides and is required for dietary fat absorption and fat storage in humans(1). DGAT1 belongs to the membrane-bound O-acyltransferase (MBOAT) superfamily, members of which are found in all kingdoms of life and are involved in the acylation of lipids and proteins(2,3). How human DGAT1 and other mammalian members of the MBOAT family recognize their substrates and catalyse their reactions is unknown. The absence of three-dimensional structures also hampers rational targeting of DGAT1 for therapeutic purposes. Here we present the cryo-electron microscopy structure of human DGAT1 in complex with an oleoyl-CoA substrate. Each DGAT1 protomer has nine transmembrane helices, eight of which form a conserved structural fold that we name the MBOAT fold. The MBOAT fold in DGAT1 forms a hollow chamber in the membrane that encloses highly conserved catalytic residues. The chamber has separate entrances for each of the two substrates, fatty acyl-CoA and diacylglycerol. DGAT1 can exist as either a homodimer or a homotetramer and the two forms have similar enzymatic activity. The N terminus of DGAT1 interacts with the neighbouring protomer and these interactions are required for enzymatic activity.


  
The online competition between pro- and anti-vaccination views 期刊论文
NATURE, 2020, 582 (7811) : 230-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Insights into the interactions between pro- and anti-vaccination clusters on Facebook can enable policies and approaches that attempt to interrupt the shift to anti-vaccination views and persuade undecided individuals to adopt a pro-vaccination stance.


Distrust in scientific expertise(1-14) is dangerous. Opposition to vaccination with a future vaccine against SARS-CoV-2, the causal agent of COVID-19, for example, could amplify outbreaks(2-4), as happened for measles in 2019(5,6). Homemade remedies(7,8) and falsehoods are being shared widely on the Internet, as well as dismissals of expert advice(9-11). There is a lack of understanding about how this distrust evolves at the system level(13,14). Here we provide a map of the contention surrounding vaccines that has emerged from the global pool of around three billion Facebook users. Its core reveals a multi-sided landscape of unprecedented intricacy that involves nearly 100 million individuals partitioned into highly dynamic, interconnected clusters across cities, countries, continents and languages. Although smaller in overall size, anti-vaccination clusters manage to become highly entangled with undecided clusters in the main online network, whereas pro-vaccination clusters are more peripheral. Our theoretical framework reproduces the recent explosive growth in anti-vaccination views, and predicts that these views will dominate in a decade. Insights provided by this framework can inform new policies and approaches to interrupt this shift to negative views. Our results challenge the conventional thinking about undecided individuals in issues of contention surrounding health, shed light on other issues of contention such as climate change(11), and highlight the key role of network cluster dynamics in multi-species ecologies(15).


  
Securin-independent regulation of separase by checkpoint-induced shugoshin-MAD2 期刊论文
NATURE, 2020, 580 (7804) : 536-+
作者:  Redhai, Siamak;  Pilgrim, Clare;  Gaspar, Pedro;  van Giesen, Lena;  Lopes, Tatiana;  Riabinina, Olena;  Grenier, Theodore;  Milona, Alexandra;  Chanana, Bhavna;  Swadling, Jacob B.;  Wang, Yi-Fang;  Dahalan, Farah;  Yuan, Michaela;  Wilsch-Brauninger, Michaela;  Lin, Wei-hsiang;  Dennison, Nathan;  Capriotti, Paolo;  Lawniczak, Mara K. N.;  Baines, Richard A.;  Warnecke, Tobias;  Windbichler, Nikolai;  Leulier, Francois;  Bellono, Nicholas W.;  Miguel-Aliaga, Irene
收藏  |  浏览/下载:32/0  |  提交时间:2020/07/03

Shugoshin and MAD2 regulate separase-mediated chromosome separation during mitosis, in parallel to a previously identified mechanism involving the anaphase inhibitor securin.


Separation of eukaryotic sister chromatids during the cell cycle is timed by the spindle assembly checkpoint (SAC) and ultimately triggered when separase cleaves cohesion-mediating cohesin(1-3). Silencing of the SAC during metaphase activates the ubiquitin ligase APC/C (anaphase-promoting complex, also known as the cyclosome) and results in the proteasomal destruction of the separase inhibitor securin(1). In the absence of securin, mammalian chromosomes still segregate on schedule, but it is unclear how separase is regulated under these conditions(4,5). Here we show that human shugoshin 2 (SGO2), an essential protector of meiotic cohesin with unknown functions in the soma(6,7), is turned into a separase inhibitor upon association with SAC-activated MAD2. SGO2-MAD2 can functionally replace securin and sequesters most separase in securin-knockout cells. Acute loss of securin and SGO2, but not of either protein individually, resulted in separase deregulation associated with premature cohesin cleavage and cytotoxicity. Similar to securin(8,9), SGO2 is a competitive inhibitor that uses a pseudo-substrate sequence to block the active site of separase. APC/C-dependent ubiquitylation and action of the AAA-ATPase TRIP13 in conjunction with the MAD2-specific adaptor p31(comet) liberate separase from SGO2-MAD2 in vitro. The latter mechanism facilitates a considerable degree of sister chromatid separation in securin-knockout cells that lack APC/C activity. Thus, our results identify an unexpected function of SGO2 in mitotically dividing cells and a mechanism of separase regulation that is independent of securin but still supervised by the SAC.


  
Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins 期刊论文
NATURE, 2020, 583 (7815) : 282-+
作者:  Li, Jia;  Yang, Xiangdong;  Liu, Yang;  Huang, Bolong;  Wu, Ruixia;  Zhang, Zhengwei;  Zhao, Bei;  Ma, Huifang;  Dang, Weiqi;  Wei, Zheng;  Wang, Kai;  Lin, Zhaoyang;  Yan, Xingxu;  Sun, Mingzi;  Li, Bo;  Pan, Xiaoqing;  Luo, Jun;  Zhang, Guangyu;  Liu, Yuan;  Huang, Yu;  Duan, Xidong;  Duan, Xiangfeng
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-2(1). This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection(2).Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manisjavanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.


  
Universal quantum logic in hot silicon qubits 期刊论文
NATURE, 2020, 580 (7803) : 355-+
作者:  Li, Jia;  Yang, Xiangdong;  Liu, Yang;  Huang, Bolong;  Wu, Ruixia;  Zhang, Zhengwei;  Zhao, Bei;  Ma, Huifang;  Dang, Weiqi;  Wei, Zheng;  Wang, Kai;  Lin, Zhaoyang;  Yan, Xingxu;  Sun, Mingzi;  Li, Bo;  Pan, Xiaoqing;  Luo, Jun;  Zhang, Guangyu;  Liu, Yuan;  Huang, Yu;  Duan, Xidong;  Duan, Xiangfeng
收藏  |  浏览/下载:40/0  |  提交时间:2020/07/03

Quantum computation requires many qubits that can be coherently controlled and coupled to each other(1). Qubits that are defined using lithographic techniques have been suggested to enable the development of scalable quantum systems because they can be implemented using semiconductor fabrication technology(2-5). However, leading solid-state approaches function only at temperatures below 100 millikelvin, where cooling power is extremely limited, and this severely affects the prospects of practical quantum computation. Recent studies of electron spins in silicon have made progress towards a platform that can be operated at higher temperatures by demonstrating long spin lifetimes(6), gate-based spin readout(7) and coherent single-spin control(8). However, a high-temperature two-qubit logic gate has not yet been demonstrated. Here we show that silicon quantum dots can have sufficient thermal robustness to enable the execution of a universal gate set at temperatures greater than one kelvin. We obtain single-qubit control via electron spin resonance and readout using Pauli spin blockade. In addition, we show individual coherent control of two qubits and measure single-qubit fidelities of up to 99.3 per cent. We demonstrate the tunability of the exchange interaction between the two spins from 0.5 to 18 megahertz and use it to execute coherent two-qubit controlled rotations. The demonstration of '  hot'  and universal quantum logic in a semiconductor platform paves the way for quantum integrated circuits that host both the quantum hardware and its control circuitry on the same chip, providing a scalable approach towards practical quantum information processing.


  
Mott and generalized Wigner crystal states in WSe2/WS2 moire superlattices 期刊论文
NATURE, 2020, 579 (7799) : 359-+
作者:  Yuan, Jie;  Chang, Si-Yuan;  Yin, Shi-Gang;  Liu, Zhi-Yang;  Cheng, Xiu;  Liu, Xi-Juan;  Jiang, Qiang;  Gao, Ge;  Lin, De-Ying;  Kang, Xin-Lei;  Ye, Shi-Wei;  Chen, Zheng;  Yin, Jiang-An;  Hao, Pei;  Jiang, Lubin;  Cai, Shi-Qing
收藏  |  浏览/下载:50/0  |  提交时间:2020/07/03

Strongly correlated insulating Mott and generalized Wigner phases are detected in WSe2/WS2 moire superlattices, and their electrical properties and excited spin states are studied using an optical technique.


Moire superlattices can be used to engineer strongly correlated electronic states in two-dimensional van der Waals heterostructures, as recently demonstrated in the correlated insulating and superconducting states observed in magic-angle twisted-bilayer graphene and ABC trilayer graphene/boron nitride moire superlattices(1-4). Transition metal dichalcogenide moire heterostructures provide another model system for the study of correlated quantum phenomena(5) because of their strong light-matter interactions and large spin-orbit coupling. However, experimental observation of correlated insulating states in this system is challenging with traditional transport techniques. Here we report the optical detection of strongly correlated phases in semiconducting WSe2/WS2 moire superlattices. We use a sensitive optical detection technique and reveal a Mott insulator state at one hole per superlattice site and surprising insulating phases at 1/3 and 2/3 filling of the superlattice, which we assign to generalized Wigner crystallization on the underlying lattice(6-11). Furthermore, the spin-valley optical selection rules(12-14) of transition metal dichalcogenide heterostructures allow us to optically create and investigate low-energy excited spin states in the Mott insulator. We measure a very long spin relaxation lifetime of many microseconds in the Mott insulating state, orders of magnitude longer than that of charge excitations. Our studies highlight the value of using moire superlattices beyond graphene to explore correlated physics.


  
Alcohol-derived DNA crosslinks are repaired by two distinct mechanisms 期刊论文
NATURE, 2020, 579 (7800) : 603-+
作者:  Xu, Wanghuai;  Zheng, Huanxi;  Liu, Yuan;  Zhou, Xiaofeng;  Zhang, Chao;  Song, Yuxin;  Deng, Xu;  Leung, Michael;  Yang, Zhengbao;  Xu, Ronald X.;  Wang, Zhong Lin;  Zeng, Xiao Cheng;  Wang, Zuankai
收藏  |  浏览/下载:20/0  |  提交时间:2020/07/03

Acetaldehyde is a highly reactive, DNA-damaging metabolite that is produced upon alcohol consumption(1). Impaired detoxification of acetaldehyde is common in the Asian population, and is associated with alcohol-related cancers(1,2). Cells are protected against acetaldehyde-induced damage by DNA crosslink repair, which when impaired causes Fanconi anaemia (FA), a disease resulting in failure to produce blood cells and a predisposition to cancer(3,4). The combined inactivation of acetaldehyde detoxification and the FA pathway induces mutation, accelerates malignancies and causes the rapid attrition of blood stem cells(5-7). However, the nature of the DNA damage induced by acetaldehyde and how this is repaired remains a key question. Here we generate acetaldehyde-induced DNA interstrand crosslinks and determine their repair mechanism in Xenopus egg extracts. We find that two replication-coupled pathways repair these lesions. The first is the FA pathway, which operates using excision-analogous to the mechanism used to repair the interstrand crosslinks caused by the chemotherapeutic agent cisplatin. However, the repair of acetaldehyde-induced crosslinks results in increased mutation frequency and an altered mutational spectrum compared with the repair of cisplatin-induced crosslinks. The second repair mechanism requires replication fork convergence, but does not involve DNA incisions-instead the acetaldehyde crosslink itself is broken. The Y-family DNA polymerase REV1 completes repair of the crosslink, culminating in a distinct mutational spectrum. These results define the repair pathways of DNA interstrand crosslinks caused by an endogenous and alcohol-derived metabolite, and identify an excision-independent mechanism.


DNA interstrand crosslinks induced by acetaldehyde are repaired by both the Fanconi anaemia pathway and by a second, excision-independent repair mechanism.


  
Negative supercoil at gene boundaries modulates gene topology 期刊论文
NATURE, 2020, 577 (7792) : 701-+
作者:  Yuan, Guowen;  Lin, Dongjing;  Wang, Yong;  Huang, Xianlei;  Chen, Wang;  Xie, Xuedong;  Zong, Junyu;  Yuan, Qian-Qian;  Zheng, Hang;  Wang, Di;  Xu, Jie;  Li, Shao-Chun;  Zhang, Yi;  Sun, Jian;  Xi, Xiaoxiang;  Gao, Libo
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Transcription challenges the integrity of replicating chromosomes by generating topological stress and conflicts with forks(1,2). The DNA topoisomerases Top1 and Top2 and the HMGB family protein Hmo1 assist DNA replication and transcription(3-6). Here we describe the topological architecture of genes in Saccharomyces cerevisiae during the G1 and S phases of the cell cycle. We found under-wound DNA at gene boundaries and over-wound DNA within coding regions. This arrangement does not depend on Pol II or S phase. Top2 and Hmo1 preserve negative supercoil at gene boundaries, while Top1 acts at coding regions. Transcription generates RNA-DNA hybrids within coding regions, independently of fork orientation. During S phase, Hmo1 protects under-wound DNA from Top2, while Top2 confines Pol II and Top1 at coding units, counteracting transcription leakage and aberrant hybrids at gene boundaries. Negative supercoil at gene boundaries prevents supercoil diffusion and nucleosome repositioning at coding regions. DNA looping occurs at Top2 clusters. We propose that Hmo1 locks gene boundaries in a cruciform conformation and, with Top2, modulates the architecture of genes that retain the memory of the topological arrangements even when transcription is repressed.