GSTDTAP

浏览/检索结果: 共2条,第1-2条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
A metabolic pathway for bile acid dehydroxylation by the gut microbiome 期刊论文
NATURE, 2020
作者:  Zhong, Miao;  Tran, Kevin;  Min, Yimeng;  Wang, Chuanhao;  Wang, Ziyun;  Dinh, Cao-Thang;  De Luna, Phil;  Yu, Zongqian;  Rasouli, Armin Sedighian;  Brodersen, Peter;  Sun, Song;  Voznyy, Oleksandr;  Tan, Chih-Shan;  Askerka, Mikhail;  Che, Fanglin;  Liu, Min;  Seifitokaldani, Ali;  Pang, Yuanjie;  Lo, Shen-Chuan;  Ip, Alexander;  Ulissi, Zachary;  Sargent, Edward H.
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

The biosynthetic pathway that produces the secondary bile acids DCA and LCA in human gut microbes has been fully characterized, engineered into another bacterial host, and used to confer DCA production in germ-free mice-an important proof-of-principle for the engineering of gut microbial pathways.


The gut microbiota synthesize hundreds of molecules, many of which influence host physiology. Among the most abundant metabolites are the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA), which accumulate at concentrations of around 500 mu M and are known to block the growth ofClostridium difficile(1), promote hepatocellular carcinoma(2)and modulate host metabolism via the G-protein-coupled receptor TGR5 (ref.(3)). More broadly, DCA, LCA and their derivatives are major components of the recirculating pool of bile acids(4)  the size and composition of this pool are a target of therapies for primary biliary cholangitis and nonalcoholic steatohepatitis. Nonetheless, despite the clear impact of DCA and LCA on host physiology, an incomplete knowledge of their biosynthetic genes and a lack of genetic tools to enable modification of their native microbial producers limit our ability to modulate secondary bile acid levels in the host. Here we complete the pathway to DCA and LCA by assigning and characterizing enzymes for each of the steps in its reductive arm, revealing a strategy in which the A-B rings of the steroid core are transiently converted into an electron acceptor for two reductive steps carried out by Fe-S flavoenzymes. Using anaerobic in vitro reconstitution, we establish that a set of six enzymes is necessary and sufficient for the eight-step conversion of cholic acid to DCA. We then engineer the pathway intoClostridium sporogenes, conferring production of DCA and LCA on a nonproducing commensal and demonstrating that a microbiome-derived pathway can be expressed and controlled heterologously. These data establish a complete pathway to two central components of the bile acid pool.


  
Live-animal imaging of native haematopoietic stem and progenitor cells 期刊论文
NATURE, 2020, 578 (7794) : 278-+
作者:  Gerstung, Moritz;  Jolly, Clemency;  Leshchiner, Ignaty;  Dentro, Stefan C.;  Gonzalez, Santiago;  Rosebrock, Daniel;  Mitchell, Thomas J.;  Rubanova, Yulia;  Anur, Pavana;  Yu, Kaixian;  Tarabichi, Maxime;  Deshwar, Amit;  Wintersinger, Jeff;  Kleinheinz, Kortine;  Vazquez-Garcia, Ignacio;  Haase, Kerstin;  Jerman, Lara;  Sengupta, Subhajit;  Macintyre, Geoff;  Malikic, Salem;  Donmez, Nilgun;  Livitz, Dimitri G.;  Cmero, Marek;  Demeulemeester, Jonas;  Schumacher, Steven;  Fan, Yu;  Yao, Xiaotong;  Lee, Juhee;  Schlesner, Matthias;  Boutros, Paul C.;  Bowtell, David D.;  Zhu, Hongtu;  Getz, Gad;  Imielinski, Marcin;  Beroukhim, Rameen;  Sahinalp, S. Cenk;  Ji, Yuan;  Peifer, Martin;  Markowetz, Florian;  Mustonen, Ville;  Yuan, Ke;  Wang, Wenyi;  Morris, Quaid D.;  Spellman, Paul T.;  Wedge, David C.;  Van Loo, Peter;  Deshwar, Amit G.;  Adams, David J.;  Campbell, Peter J.;  Cao, Shaolong;  Christie, Elizabeth L.;  Cun, Yupeng;  Dawson, Kevin J.;  Drews, Ruben M.;  Eils, Roland;  Fittall, Matthew;  Garsed, Dale W.;  Ha, Gavin;  Lee-Six, Henry;  Martincorena, Inigo;  Oesper, Layla;  Peto, Myron;  Raphael, Benjamin J.;  Salcedo, Adriana;  Shi, Ruian;  Shin, Seung Jun;  Spiro, Oliver;  Stein, Lincoln D.;  Vembu, Shankar;  Wheeler, David A.;  Yang, Tsun-Po
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

The biology of haematopoietic stem cells (HSCs) has predominantly been studied under transplantation conditions(1,2). It has been particularly challenging to study dynamic HSC behaviour, given that the visualization of HSCs in the native niche in live animals has not, to our knowledge, been achieved. Here we describe a dual genetic strategy in mice that restricts reporter labelling to a subset of the most quiescent long-term HSCs (LT-HSCs) and that is compatible with current intravital imaging approaches in the calvarial bone marrow(3-5). We show that this subset of LT-HSCs resides close to both sinusoidal blood vessels and the endosteal surface. By contrast, multipotent progenitor cells (MPPs) show greater variation in distance from the endosteum and are more likely to be associated with transition zone vessels. LT-HSCs are not found in bone marrow niches with the deepest hypoxia and instead are found in hypoxic environments similar to those of MPPs. In vivo time-lapse imaging revealed that LT-HSCs at steady-state show limited motility. Activated LT-HSCs show heterogeneous responses, with some cells becoming highly motile and a fraction of HSCs expanding clonally within spatially restricted domains. These domains have defined characteristics, as HSC expansion is found almost exclusively in a subset of bone marrow cavities with bone-remodelling activity. By contrast, cavities with low bone-resorbing activity do not harbour expanding HSCs. These findings point to previously unknown heterogeneity within the bone marrow microenvironment, imposed by the stages of bone turnover. Our approach enables the direct visualization of HSC behaviours and dissection of heterogeneity in HSC niches.


A dual genetic strategy enables the labelling and in vivo imaging of native long-term haematopoietic stem cells in the mouse calvarial bone marrow.