GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Economics in the Age of COVID-19 期刊论文
NATURE, 2020, 581 (7809) : 375-377
作者:  Yin, Juan;  Li, Yu-Huai;  Liao, Sheng-Kai;  Yang, Meng;  Cao, Yuan;  Zhang, Liang;  Ren, Ji-Gang;  Cai, Wen-Qi;  Liu, Wei-Yue;  Li, Shuang-Lin;  Shu, Rong;  Huang, Yong-Mei;  Deng, Lei;  Li, Li;  Zhang, Qiang;  Liu, Nai-Le
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/03

Breakneck triage nails many diagnoses, but deeper treatment is needed.


Breakneck triage nails many diagnoses, but deeper treatment is needed.


  
Oncometabolites suppress DNA repair by disrupting local chromatin signalling 期刊论文
NATURE, 2020
作者:  Zhang, Xu;  Lei, Bo;  Yuan, Yuan;  Zhang, Li;  Hu, Lu;  Jin, Sen;  Kang, Bilin;  Liao, Xuebin;  Sun, Wenzhi;  Xu, Fuqiang;  Zhong, Yi;  Hu, Ji;  Qi, Hai
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

Metabolites that are elevated in tumours inhibit the lysine demethylase KDM4B, resulting in aberrant hypermethylation of histone 3 lysine 9 and decreased homology-dependent DNA repair.


Deregulation of metabolism and disruption of genome integrity are hallmarks of cancer(1). Increased levels of the metabolites 2-hydroxyglutarate, succinate and fumarate occur in human malignancies owing to somatic mutations in the isocitrate dehydrogenase-1 or -2 (IDH1 or IDH2) genes, or germline mutations in the fumarate hydratase (FH) and succinate dehydrogenase genes (SDHA, SDHB, SDHC and SDHD), respectively(2-4). Recent work has made an unexpected connection between these metabolites and DNA repair by showing that they suppress the pathway of homology-dependent repair (HDR)(5,6) and confer an exquisite sensitivity to inhibitors of poly (ADP-ribose) polymerase (PARP) that are being tested in clinical trials. However, the mechanism by which these oncometabolites inhibit HDR remains poorly understood. Here we determine the pathway by which these metabolites disrupt DNA repair. We show that oncometabolite-induced inhibition of the lysine demethylase KDM4B results in aberrant hypermethylation of histone 3 lysine 9 (H3K9) at loci surrounding DNA breaks, masking a local H3K9 trimethylation signal that is essential for the proper execution of HDR. Consequently, recruitment of TIP60 and ATM, two key proximal HDR factors, is substantially impaired at DNA breaks, with reduced end resection and diminished recruitment of downstream repair factors. These findings provide a mechanistic basis for oncometabolite-induced HDR suppression and may guide effective strategies to exploit these defects for therapeutic gain.


  
Live-animal imaging of native haematopoietic stem and progenitor cells 期刊论文
NATURE, 2020, 578 (7794) : 278-+
作者:  Gerstung, Moritz;  Jolly, Clemency;  Leshchiner, Ignaty;  Dentro, Stefan C.;  Gonzalez, Santiago;  Rosebrock, Daniel;  Mitchell, Thomas J.;  Rubanova, Yulia;  Anur, Pavana;  Yu, Kaixian;  Tarabichi, Maxime;  Deshwar, Amit;  Wintersinger, Jeff;  Kleinheinz, Kortine;  Vazquez-Garcia, Ignacio;  Haase, Kerstin;  Jerman, Lara;  Sengupta, Subhajit;  Macintyre, Geoff;  Malikic, Salem;  Donmez, Nilgun;  Livitz, Dimitri G.;  Cmero, Marek;  Demeulemeester, Jonas;  Schumacher, Steven;  Fan, Yu;  Yao, Xiaotong;  Lee, Juhee;  Schlesner, Matthias;  Boutros, Paul C.;  Bowtell, David D.;  Zhu, Hongtu;  Getz, Gad;  Imielinski, Marcin;  Beroukhim, Rameen;  Sahinalp, S. Cenk;  Ji, Yuan;  Peifer, Martin;  Markowetz, Florian;  Mustonen, Ville;  Yuan, Ke;  Wang, Wenyi;  Morris, Quaid D.;  Spellman, Paul T.;  Wedge, David C.;  Van Loo, Peter;  Deshwar, Amit G.;  Adams, David J.;  Campbell, Peter J.;  Cao, Shaolong;  Christie, Elizabeth L.;  Cun, Yupeng;  Dawson, Kevin J.;  Drews, Ruben M.;  Eils, Roland;  Fittall, Matthew;  Garsed, Dale W.;  Ha, Gavin;  Lee-Six, Henry;  Martincorena, Inigo;  Oesper, Layla;  Peto, Myron;  Raphael, Benjamin J.;  Salcedo, Adriana;  Shi, Ruian;  Shin, Seung Jun;  Spiro, Oliver;  Stein, Lincoln D.;  Vembu, Shankar;  Wheeler, David A.;  Yang, Tsun-Po
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

The biology of haematopoietic stem cells (HSCs) has predominantly been studied under transplantation conditions(1,2). It has been particularly challenging to study dynamic HSC behaviour, given that the visualization of HSCs in the native niche in live animals has not, to our knowledge, been achieved. Here we describe a dual genetic strategy in mice that restricts reporter labelling to a subset of the most quiescent long-term HSCs (LT-HSCs) and that is compatible with current intravital imaging approaches in the calvarial bone marrow(3-5). We show that this subset of LT-HSCs resides close to both sinusoidal blood vessels and the endosteal surface. By contrast, multipotent progenitor cells (MPPs) show greater variation in distance from the endosteum and are more likely to be associated with transition zone vessels. LT-HSCs are not found in bone marrow niches with the deepest hypoxia and instead are found in hypoxic environments similar to those of MPPs. In vivo time-lapse imaging revealed that LT-HSCs at steady-state show limited motility. Activated LT-HSCs show heterogeneous responses, with some cells becoming highly motile and a fraction of HSCs expanding clonally within spatially restricted domains. These domains have defined characteristics, as HSC expansion is found almost exclusively in a subset of bone marrow cavities with bone-remodelling activity. By contrast, cavities with low bone-resorbing activity do not harbour expanding HSCs. These findings point to previously unknown heterogeneity within the bone marrow microenvironment, imposed by the stages of bone turnover. Our approach enables the direct visualization of HSC behaviours and dissection of heterogeneity in HSC niches.


A dual genetic strategy enables the labelling and in vivo imaging of native long-term haematopoietic stem cells in the mouse calvarial bone marrow.