GSTDTAP

浏览/检索结果: 共9条,第1-9条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Proton-assisted growth of ultra-flat graphene films 期刊论文
NATURE, 2020, 577 (7789) : 204-+
作者:  Yuan, Guowen;  Lin, Dongjing;  Wang, Yong;  Huang, Xianlei;  Chen, Wang;  Xie, Xuedong;  Zong, Junyu;  Yuan, Qian-Qian;  Zheng, Hang;  Wang, Di;  Xu, Jie;  Li, Shao-Chun;  Zhang, Yi;  Sun, Jian;  Xi, Xiaoxiang;  Gao, Libo
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Graphene films grown by chemical vapour deposition have unusual physical and chemical properties that offer promise for applications such as flexible electronics and high-frequency transistors(1-10). However, wrinkles invariably form during growth because of the strong coupling to the substrate, and these limit the large-scale homogeneity of the film(1-4,11,12). Here we develop a proton-assisted method of chemical vapour deposition to grow ultra-flat graphene films that are wrinkle-free. Our method of proton penetration(13-17) and recombination to form hydrogen can also reduce the wrinkles formed during traditional chemical vapour deposition of graphene. Some of the wrinkles disappear entirely, owing to the decoupling of van der Waals interactions and possibly an increase in distance from the growth surface. The electronic band structure of the as-grown graphene films shows a V-shaped Dirac cone and a linear dispersion relation within the atomic plane or across an atomic step, confirming the decoupling from the substrate. The ultra-flat nature of the graphene films ensures that their surfaces are easy to clean after a wet transfer process. A robust quantum Hall effect appears even at room temperature in a device with a linewidth of 100 micrometres. Graphene films grown by proton-assisted chemical vapour deposition should largely retain their intrinsic performance, and our method should be easily generalizable to other nanomaterials for strain and doping engineering.


  
DNA-repair enzyme turns to translation 期刊论文
NATURE, 2020, 579 (7798) : 198-199
作者:  Bian, Zhilei;  Gong, Yandong;  Huang, Tao;  Lee, Christopher Z. W.;  Bian, Lihong;  Bai, Zhijie;  Shi, Hui;  Zeng, Yang;  Liu, Chen;  He, Jian;  Zhou, Jie;  Li, Xianlong;  Li, Zongcheng;  Ni, Yanli;  Ma, Chunyu;  Cui, Lei;  Zhang, Rui;  Chan, Jerry K. Y.;  Ng, Lai Guan;  Lan, Yu;  Ginhoux, Florent;  Liu, Bing
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

A key DNA-repair enzyme has a surprising role during the early steps in the assembly of ribosomes - the molecular machines that translate the genetic code into protein.


  
Millennial-scale hydroclimate control of tropical soil carbon storage 期刊论文
NATURE, 2020, 581 (7806) : 63-+
作者:  Lam, Tommy Tsan-Yuk;  Jia, Na;  Zhang, Ya-Wei;  Shum, Marcus Ho-Hin;  Jiang, Jia-Fu;  Zhu, Hua-Chen;  Tong, Yi-Gang;  Shi, Yong-Xia;  Ni, Xue-Bing;  Liao, Yun-Shi;  Li, Wen-Juan;  Jiang, Bao-Gui;  Wei, Wei;  Yuan, Ting-Ting;  Zheng, Kui;  Cui, Xiao-Ming;  Li, Jie;  Pei, Guang-Qian
收藏  |  浏览/下载:25/0  |  提交时间:2020/05/13

Over the past 18,000 years, the residence time and amount of soil carbon stored in the Ganges-Brahmaputra basin have been controlled by the intensity of Indian Summer Monsoon rainfall, with greater carbon destabilization during wetter, warmer conditions.


The storage of organic carbon in the terrestrial biosphere directly affects atmospheric concentrations of carbon dioxide over a wide range of timescales. Within the terrestrial biosphere, the magnitude of carbon storage can vary in response to environmental perturbations such as changing temperature or hydroclimate(1), potentially generating feedback on the atmospheric inventory of carbon dioxide. Although temperature controls the storage of soil organic carbon at mid and high latitudes(2,3), hydroclimate may be the dominant driver of soil carbon persistence in the tropics(4,5)  however, the sensitivity of tropical soil carbon turnover to large-scale hydroclimate variability remains poorly understood. Here we show that changes in Indian Summer Monsoon rainfall have controlled the residence time of soil carbon in the Ganges-Brahmaputra basin over the past 18,000 years. Comparison of radiocarbon ages of bulk organic carbon and terrestrial higher-plant biomarkers with co-located palaeohydrological records(6) reveals a negative relationship between monsoon rainfall and soil organic carbon stocks on a millennial timescale. Across the deglaciation period, a depletion of basin-wide soil carbon stocks was triggered by increasing rainfall and associated enhanced soil respiration rates. Our results suggest that future hydroclimate changes in tropical regions are likely to accelerate soil carbon destabilization, further increasing atmospheric carbon dioxide concentrations.


  
Mott and generalized Wigner crystal states in WSe2/WS2 moire superlattices 期刊论文
NATURE, 2020, 579 (7799) : 359-+
作者:  Yuan, Jie;  Chang, Si-Yuan;  Yin, Shi-Gang;  Liu, Zhi-Yang;  Cheng, Xiu;  Liu, Xi-Juan;  Jiang, Qiang;  Gao, Ge;  Lin, De-Ying;  Kang, Xin-Lei;  Ye, Shi-Wei;  Chen, Zheng;  Yin, Jiang-An;  Hao, Pei;  Jiang, Lubin;  Cai, Shi-Qing
收藏  |  浏览/下载:50/0  |  提交时间:2020/07/03

Strongly correlated insulating Mott and generalized Wigner phases are detected in WSe2/WS2 moire superlattices, and their electrical properties and excited spin states are studied using an optical technique.


Moire superlattices can be used to engineer strongly correlated electronic states in two-dimensional van der Waals heterostructures, as recently demonstrated in the correlated insulating and superconducting states observed in magic-angle twisted-bilayer graphene and ABC trilayer graphene/boron nitride moire superlattices(1-4). Transition metal dichalcogenide moire heterostructures provide another model system for the study of correlated quantum phenomena(5) because of their strong light-matter interactions and large spin-orbit coupling. However, experimental observation of correlated insulating states in this system is challenging with traditional transport techniques. Here we report the optical detection of strongly correlated phases in semiconducting WSe2/WS2 moire superlattices. We use a sensitive optical detection technique and reveal a Mott insulator state at one hole per superlattice site and surprising insulating phases at 1/3 and 2/3 filling of the superlattice, which we assign to generalized Wigner crystallization on the underlying lattice(6-11). Furthermore, the spin-valley optical selection rules(12-14) of transition metal dichalcogenide heterostructures allow us to optically create and investigate low-energy excited spin states in the Mott insulator. We measure a very long spin relaxation lifetime of many microseconds in the Mott insulating state, orders of magnitude longer than that of charge excitations. Our studies highlight the value of using moire superlattices beyond graphene to explore correlated physics.


  
A self-activating orphan receptor 期刊论文
NATURE, 2020, 579 (7797) : 35-35
作者:  Wang, Lin;  Wu, Juehui;  Li, Jun;  Yang, Hua;  Tang, Tianqi;  Liang, Haijiao;  Zuo, Mianyong;  Wang, Jie;  Liu, Haipeng;  Liu, Feng;  Chen, Jianxia;  Liu, Zhonghua;  Wang, Yang;  Peng, Cheng;  Wu, Xiangyang;  Zheng, Ruijuan;  Huang, Xiaochen;  Ran, Yajun;  Rao, Zihe;  Ge, Baoxue
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

The first 3D structure of a full-length G-protein-coupled receptor whose natural activator is unknown has been determined, providing insights into an unusual mode of activation and a basis for discovering therapeutics.


  
China takes centre stage in global biodiversity push 期刊论文
NATURE, 2020, 578 (7795) : 345-346
作者:  Wang, Lin;  Wu, Juehui;  Li, Jun;  Yang, Hua;  Tang, Tianqi;  Liang, Haijiao;  Zuo, Mianyong;  Wang, Jie;  Liu, Haipeng;  Liu, Feng;  Chen, Jianxia;  Liu, Zhonghua;  Wang, Yang;  Peng, Cheng;  Wu, Xiangyang;  Zheng, Ruijuan;  Huang, Xiaochen;  Ran, Yajun;  Rao, Zihe;  Ge, Baoxue
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/03

A major United Nations summit could see China push for ambitious targets and spotlights the country'  s own conservation efforts.


A major United Nations summit could see China push for ambitious targets and spotlights the country'  s own conservation efforts.


  
Negative supercoil at gene boundaries modulates gene topology 期刊论文
NATURE, 2020, 577 (7792) : 701-+
作者:  Yuan, Guowen;  Lin, Dongjing;  Wang, Yong;  Huang, Xianlei;  Chen, Wang;  Xie, Xuedong;  Zong, Junyu;  Yuan, Qian-Qian;  Zheng, Hang;  Wang, Di;  Xu, Jie;  Li, Shao-Chun;  Zhang, Yi;  Sun, Jian;  Xi, Xiaoxiang;  Gao, Libo
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/03

Transcription challenges the integrity of replicating chromosomes by generating topological stress and conflicts with forks(1,2). The DNA topoisomerases Top1 and Top2 and the HMGB family protein Hmo1 assist DNA replication and transcription(3-6). Here we describe the topological architecture of genes in Saccharomyces cerevisiae during the G1 and S phases of the cell cycle. We found under-wound DNA at gene boundaries and over-wound DNA within coding regions. This arrangement does not depend on Pol II or S phase. Top2 and Hmo1 preserve negative supercoil at gene boundaries, while Top1 acts at coding regions. Transcription generates RNA-DNA hybrids within coding regions, independently of fork orientation. During S phase, Hmo1 protects under-wound DNA from Top2, while Top2 confines Pol II and Top1 at coding units, counteracting transcription leakage and aberrant hybrids at gene boundaries. Negative supercoil at gene boundaries prevents supercoil diffusion and nucleosome repositioning at coding regions. DNA looping occurs at Top2 clusters. We propose that Hmo1 locks gene boundaries in a cruciform conformation and, with Top2, modulates the architecture of genes that retain the memory of the topological arrangements even when transcription is repressed.


  
Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells 期刊论文
NATURE, 2020, 577 (7792) : 676-+
作者:  Zhao, Ruozhu;  Chen, Xin;  Ma, Weiwei;  Zhang, Jinyu;  Guo, Jie;  Zhong, Xiu;  Yao, Jiacheng;  Sun, Jiahui;  Rubinfien, Julian;  Zhou, Xuyu;  Wang, Jianbin;  Qi, Hai
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

Empirical and anecdotal evidence has associated stress with accelerated hair greying (formation of unpigmented hairs)(1,2), but so far there has been little scientific validation of this link. Here we report that, in mice, acute stress leads to hair greying through the fast depletion of melanocyte stem cells. Using a combination of adrenalectomy, denervation, chemogenetics(3,4), cell ablation and knockout of the adrenergic receptor specifically in melanocyte stem cells, we find that the stress-induced loss of melanocyte stem cells is independent of immune attack or adrenal stress hormones. Instead, hair greying results from activation of the sympathetic nerves that innervate the melanocyte stem-cell niche. Under conditions of stress, the activation of these sympathetic nerves leads to burst release of the neurotransmitter noradrenaline (also known as norepinephrine). This causes quiescent melanocyte stem cells to proliferate rapidly, and is followed by their differentiation, migration and permanent depletion from the niche. Transient suppression of the proliferation of melanocyte stem cells prevents stress-induced hair greying. Our study demonstrates that neuronal activity that is induced by acute stress can drive a rapid and permanent loss of somatic stem cells, and illustrates an example in which the maintenance of somatic stem cells is directly influenced by the overall physiological state of the organism.


Stress induces hair greying in mice through depletion of melanocyte stem cells, which is mediated by the activation of sympathetic nerves rather than through immune attack or adrenal stress hormones.


  
FGF-dependent metabolic control of vascular development 期刊论文
NATURE, 2017, 545 (7653) : 224-+
作者:  Yu, Pengchun;  Wilhelm, Kerstin;  Dubrac, Alexandre;  Tung, Joe K.;  Alves, Tiago C.;  Fang, Jennifer S.;  Xie, Yi;  Zhu, Jie;  Chen, Zehua;  De Smet, Frederik;  Zhang, Jiasheng;  Jin, Suk-Won;  Sun, Lele;  Sun, Hongye;  Kibbey, Richard G.;  Hirschi, Karen K.;  Hay, Nissim;  Carmeliet, Peter;  Chittenden, Thomas W.;  Eichmann, Anne;  Potente, Michael;  Simons, Michael
收藏  |  浏览/下载:8/0  |  提交时间:2019/04/09