GSTDTAP

浏览/检索结果: 共16条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
A metabolic pathway for bile acid dehydroxylation by the gut microbiome 期刊论文
NATURE, 2020
作者:  Zhong, Miao;  Tran, Kevin;  Min, Yimeng;  Wang, Chuanhao;  Wang, Ziyun;  Dinh, Cao-Thang;  De Luna, Phil;  Yu, Zongqian;  Rasouli, Armin Sedighian;  Brodersen, Peter;  Sun, Song;  Voznyy, Oleksandr;  Tan, Chih-Shan;  Askerka, Mikhail;  Che, Fanglin;  Liu, Min;  Seifitokaldani, Ali;  Pang, Yuanjie;  Lo, Shen-Chuan;  Ip, Alexander;  Ulissi, Zachary;  Sargent, Edward H.
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

The biosynthetic pathway that produces the secondary bile acids DCA and LCA in human gut microbes has been fully characterized, engineered into another bacterial host, and used to confer DCA production in germ-free mice-an important proof-of-principle for the engineering of gut microbial pathways.


The gut microbiota synthesize hundreds of molecules, many of which influence host physiology. Among the most abundant metabolites are the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA), which accumulate at concentrations of around 500 mu M and are known to block the growth ofClostridium difficile(1), promote hepatocellular carcinoma(2)and modulate host metabolism via the G-protein-coupled receptor TGR5 (ref.(3)). More broadly, DCA, LCA and their derivatives are major components of the recirculating pool of bile acids(4)  the size and composition of this pool are a target of therapies for primary biliary cholangitis and nonalcoholic steatohepatitis. Nonetheless, despite the clear impact of DCA and LCA on host physiology, an incomplete knowledge of their biosynthetic genes and a lack of genetic tools to enable modification of their native microbial producers limit our ability to modulate secondary bile acid levels in the host. Here we complete the pathway to DCA and LCA by assigning and characterizing enzymes for each of the steps in its reductive arm, revealing a strategy in which the A-B rings of the steroid core are transiently converted into an electron acceptor for two reductive steps carried out by Fe-S flavoenzymes. Using anaerobic in vitro reconstitution, we establish that a set of six enzymes is necessary and sufficient for the eight-step conversion of cholic acid to DCA. We then engineer the pathway intoClostridium sporogenes, conferring production of DCA and LCA on a nonproducing commensal and demonstrating that a microbiome-derived pathway can be expressed and controlled heterologously. These data establish a complete pathway to two central components of the bile acid pool.


  
Oncometabolites suppress DNA repair by disrupting local chromatin signalling 期刊论文
NATURE, 2020
作者:  Zhang, Xu;  Lei, Bo;  Yuan, Yuan;  Zhang, Li;  Hu, Lu;  Jin, Sen;  Kang, Bilin;  Liao, Xuebin;  Sun, Wenzhi;  Xu, Fuqiang;  Zhong, Yi;  Hu, Ji;  Qi, Hai
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/03

Metabolites that are elevated in tumours inhibit the lysine demethylase KDM4B, resulting in aberrant hypermethylation of histone 3 lysine 9 and decreased homology-dependent DNA repair.


Deregulation of metabolism and disruption of genome integrity are hallmarks of cancer(1). Increased levels of the metabolites 2-hydroxyglutarate, succinate and fumarate occur in human malignancies owing to somatic mutations in the isocitrate dehydrogenase-1 or -2 (IDH1 or IDH2) genes, or germline mutations in the fumarate hydratase (FH) and succinate dehydrogenase genes (SDHA, SDHB, SDHC and SDHD), respectively(2-4). Recent work has made an unexpected connection between these metabolites and DNA repair by showing that they suppress the pathway of homology-dependent repair (HDR)(5,6) and confer an exquisite sensitivity to inhibitors of poly (ADP-ribose) polymerase (PARP) that are being tested in clinical trials. However, the mechanism by which these oncometabolites inhibit HDR remains poorly understood. Here we determine the pathway by which these metabolites disrupt DNA repair. We show that oncometabolite-induced inhibition of the lysine demethylase KDM4B results in aberrant hypermethylation of histone 3 lysine 9 (H3K9) at loci surrounding DNA breaks, masking a local H3K9 trimethylation signal that is essential for the proper execution of HDR. Consequently, recruitment of TIP60 and ATM, two key proximal HDR factors, is substantially impaired at DNA breaks, with reduced end resection and diminished recruitment of downstream repair factors. These findings provide a mechanistic basis for oncometabolite-induced HDR suppression and may guide effective strategies to exploit these defects for therapeutic gain.


  
Neuronal programming by microbiota regulates intestinal physiology 期刊论文
NATURE, 2020, 578 (7794) : 284-+
作者:  Li, Yilong;  Roberts, Nicola D.;  Wala, Jeremiah A.;  Shapira, Ofer;  Schumacher, Steven E.;  Kumar, Kiran;  Khurana, Ekta;  Waszak, Sebastian;  Korbel, Jan O.;  Haber, James E.;  Imielinski, Marcin;  Weischenfeldt, Joachim;  Beroukhim, Rameen;  Campbell, Peter J.;  Akdemir, Kadir C.;  Alvarez, Eva G.;  Baez-Ortega, Adrian;  Boutros, Paul C.;  Bowtell, David D. L.;  Brors, Benedikt;  Burns, Kathleen H.;  Chan, Kin;  Chen, Ken;  Cortes-Ciriano, Isidro;  Dueso-Barroso, Ana;  Dunford, Andrew J.;  Edwards, Paul A.;  Estivill, Xavier;  Etemadmoghadam, Dariush;  Feuerbach, Lars;  Fink, J. Lynn;  Frenkel-Morgenstern, Milana;  Garsed, Dale W.;  Gerstein, Mark;  Gordenin, Dmitry A.;  Haan, David;  Hess, Julian M.;  Hutter, Barbara;  Jones, David T. W.;  Ju, Young Seok;  Kazanov, Marat D.;  Klimczak, Leszek J.;  Koh, Youngil;  Lee, Eunjung Alice;  Lee, Jake June-Koo;  Lynch, Andy G.;  Macintyre, Geoff;  Markowetz, Florian;  Martincorena, Inigo;  Martinez-Fundichely, Alexander;  Meyerson, Matthew;  Miyano, Satoru;  Nakagawa, Hidewaki;  Navarro, Fabio C. P.;  Ossowski, Stephan;  Park, Peter J.;  Pearson, John, V;  Puiggros, Montserrat;  Rippe, Karsten;  Roberts, Steven A.;  Rodriguez-Martin, Bernardo;  Scully, Ralph;  Shackleton, Mark;  Sidiropoulos, Nikos;  Sieverling, Lina;  Stewart, Chip;  Torrents, David;  Tubio, Jose M. C.;  Villasante, Izar;  Waddell, Nicola;  Yang, Lixing;  Yao, Xiaotong;  Yoon, Sung-Soo;  Zamora, Jorge;  Zhang, Cheng-Zhong
收藏  |  浏览/下载:40/0  |  提交时间:2020/07/03

Neural control of the function of visceral organs is essential for homeostasis and health. Intestinal peristalsis is critical for digestive physiology and host defence, and is often dysregulated in gastrointestinal disorders(1). Luminal factors, such as diet and microbiota, regulate neurogenic programs of gut motility(2-5), but the underlying molecular mechanisms remain unclear. Here we show that the transcription factor aryl hydrocarbon receptor (AHR) functions as a biosensor in intestinal neural circuits, linking their functional output to the microbial environment of the gut lumen. Using nuclear RNA sequencing of mouse enteric neurons that represent distinct intestinal segments and microbiota states, we demonstrate that the intrinsic neural networks of the colon exhibit unique transcriptional profiles that are controlled by the combined effects of host genetic programs and microbial colonization. Microbiota-induced expression of AHR in neurons of the distal gastrointestinal tract enables these neurons to respond to the luminal environment and to induce expression of neuron-specific effector mechanisms. Neuron-specific deletion of Ahr, or constitutive overexpression of its negative feedback regulator CYP1A1, results in reduced peristaltic activity of the colon, similar to that observed in microbiota-depleted mice. Finally, expression of Ahr in the enteric neurons of mice treated with antibiotics partially restores intestinal motility. Together, our experiments identify AHR signalling in enteric neurons as a regulatory node that integrates the luminal environment with the physiological output of intestinal neural circuits to maintain gut homeostasis and health.


In a mouse model, aryl hydrocarbon receptor signalling in enteric neurons is revealed as a mechanism that helps to maintain gut homeostasis by integrating the luminal environment with the physiology of intestinal neural circuits.


  
Alcohol-derived DNA crosslinks are repaired by two distinct mechanisms 期刊论文
NATURE, 2020, 579 (7800) : 603-+
作者:  Xu, Wanghuai;  Zheng, Huanxi;  Liu, Yuan;  Zhou, Xiaofeng;  Zhang, Chao;  Song, Yuxin;  Deng, Xu;  Leung, Michael;  Yang, Zhengbao;  Xu, Ronald X.;  Wang, Zhong Lin;  Zeng, Xiao Cheng;  Wang, Zuankai
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/03

Acetaldehyde is a highly reactive, DNA-damaging metabolite that is produced upon alcohol consumption(1). Impaired detoxification of acetaldehyde is common in the Asian population, and is associated with alcohol-related cancers(1,2). Cells are protected against acetaldehyde-induced damage by DNA crosslink repair, which when impaired causes Fanconi anaemia (FA), a disease resulting in failure to produce blood cells and a predisposition to cancer(3,4). The combined inactivation of acetaldehyde detoxification and the FA pathway induces mutation, accelerates malignancies and causes the rapid attrition of blood stem cells(5-7). However, the nature of the DNA damage induced by acetaldehyde and how this is repaired remains a key question. Here we generate acetaldehyde-induced DNA interstrand crosslinks and determine their repair mechanism in Xenopus egg extracts. We find that two replication-coupled pathways repair these lesions. The first is the FA pathway, which operates using excision-analogous to the mechanism used to repair the interstrand crosslinks caused by the chemotherapeutic agent cisplatin. However, the repair of acetaldehyde-induced crosslinks results in increased mutation frequency and an altered mutational spectrum compared with the repair of cisplatin-induced crosslinks. The second repair mechanism requires replication fork convergence, but does not involve DNA incisions-instead the acetaldehyde crosslink itself is broken. The Y-family DNA polymerase REV1 completes repair of the crosslink, culminating in a distinct mutational spectrum. These results define the repair pathways of DNA interstrand crosslinks caused by an endogenous and alcohol-derived metabolite, and identify an excision-independent mechanism.


DNA interstrand crosslinks induced by acetaldehyde are repaired by both the Fanconi anaemia pathway and by a second, excision-independent repair mechanism.


  
H2A.Z facilitates licensing and activation of early replication origins (vol 35, pg 784, 2019) 期刊论文
NATURE, 2020, 578 (7793) : E8-E8
作者:  Cui, Jizhai;  Huang, Tian-Yun;  Luo, Zhaochu;  Testa, Paolo;  Gu, Hongri;  Chen, Xiang-Zhong;  Nelson, Bradley J.;  Heyderman, Laura J.
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03
Structure of the transcription coactivator SAGA 期刊论文
NATURE, 2020, 577 (7792) : 717-+
作者:  Sauerbrei, Britton A.;  Guo, Jian-Zhong;  Cohen, Jeremy D.;  Mischiati, Matteo;  Guo, Wendy;  Kabra, Mayank;  Verma, Nakul;  Mensh, Brett;  Branson, Kristin;  Hantman, Adam W.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Gene transcription by RNA polymerase II is regulated by activator proteins that recruit the coactivator complexes SAGA (Spt-Ada-Gcn5-acetyltransferase)(1,2) and transcription factor IID (TFIID)(2-4). SAGA is required for all regulated transcription(5) and is conserved among eukaryotes(6). SAGA contains four modules(7-9): the activator-binding Tra1 module, the core module, the histone acetyltransferase (HAT) module and the histone deubiquitination (DUB) module. Previous studies provided partial structures(10-14), but the structure of the central core module is unknown. Here we present the cryo-electron microscopy structure of SAGA from the yeast Saccharomyces cerevisiae and resolve the core module at 3.3 angstrom resolution. The core module consists of subunits Taf5, Sgf73 and Spt20, and a histone octamer-like fold. The octamer-like fold comprises the heterodimers Taf6-Taf9, Taf10-Spt7 and Taf12-Ada1, and two histone-fold domains in Spt3. Spt3 and the adjacent subunit Spt8 interact with the TATA box-binding protein (TBP)(2,7,15-17). The octamer-like fold and its TBP-interacting region are similar in TFIID, whereas Taf5 and the Taf6 HEAT domain adopt distinct conformations. Taf12 and Spt20 form flexible connections to the Tra1 module, whereas Sgf73 tethers the DUB module. Binding of a nucleosome to SAGA displaces the HAT and DUB modules from the core-module surface, allowing the DUB module to bind one face of an ubiquitinated nucleosome.


Structural studies on the yeast transcription coactivator complex SAGA (Spt-Ada-Gcn5-acetyltransferase) provide insights into the mechanism of initiation of regulated transcription by this multiprotein complex, which is conserved among eukaryotes.


  
Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells 期刊论文
NATURE, 2020, 577 (7792) : 676-+
作者:  Zhao, Ruozhu;  Chen, Xin;  Ma, Weiwei;  Zhang, Jinyu;  Guo, Jie;  Zhong, Xiu;  Yao, Jiacheng;  Sun, Jiahui;  Rubinfien, Julian;  Zhou, Xuyu;  Wang, Jianbin;  Qi, Hai
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

Empirical and anecdotal evidence has associated stress with accelerated hair greying (formation of unpigmented hairs)(1,2), but so far there has been little scientific validation of this link. Here we report that, in mice, acute stress leads to hair greying through the fast depletion of melanocyte stem cells. Using a combination of adrenalectomy, denervation, chemogenetics(3,4), cell ablation and knockout of the adrenergic receptor specifically in melanocyte stem cells, we find that the stress-induced loss of melanocyte stem cells is independent of immune attack or adrenal stress hormones. Instead, hair greying results from activation of the sympathetic nerves that innervate the melanocyte stem-cell niche. Under conditions of stress, the activation of these sympathetic nerves leads to burst release of the neurotransmitter noradrenaline (also known as norepinephrine). This causes quiescent melanocyte stem cells to proliferate rapidly, and is followed by their differentiation, migration and permanent depletion from the niche. Transient suppression of the proliferation of melanocyte stem cells prevents stress-induced hair greying. Our study demonstrates that neuronal activity that is induced by acute stress can drive a rapid and permanent loss of somatic stem cells, and illustrates an example in which the maintenance of somatic stem cells is directly influenced by the overall physiological state of the organism.


Stress induces hair greying in mice through depletion of melanocyte stem cells, which is mediated by the activation of sympathetic nerves rather than through immune attack or adrenal stress hormones.


  
Decoding the development of the human hippocampus 期刊论文
NATURE, 2020, 577 (7791) : 531-+
作者:  Zhong, Suijuan;  Ding, Wenyu;  Sun, Le;  Lu, Yufeng;  Dong, Hao;  Fan, Xiaoying;  Liu, Zeyuan;  Chen, Ruiguo;  Zhang, Shu;  Ma, Qiang;  Tang, Fuchou;  Wu, Qian;  Wang, Xiaoqun
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/03

The hippocampus is an important part of the limbic system in the human brain that has essential roles in spatial navigation and the consolidation of information from short-term memory to long-term memory(1,2). Here we use single-cell RNA sequencing and assay for transposase-accessible chromatin using sequencing (ATAC-seq) analysis to illustrate the cell types, cell linage, molecular features and transcriptional regulation of the developing human hippocampus. Using the transcriptomes of 30,416 cells from the human hippocampus at gestational weeks 16-27, we identify 47 cell subtypes and their developmental trajectories. We also identify the migrating paths and cell lineages of PAX6(+) and HOPX+ hippocampal progenitors, and regional markers of CA1, CA3 and dentate gyrus neurons. Multiomic data have uncovered transcriptional regulatory networks of the dentate gyrus marker PROX1. We also illustrate spatially specific gene expression in the developing human prefrontal cortex and hippocampus. The molecular features of the human hippocampus at gestational weeks 16-20 are similar to those of the mouse at postnatal days 0-5 and reveal gene expression differences between the two species. Transient expression of the primate-specific gene NBPF1 leads to a marked increase in PROX1(+) cells in the mouse hippocampus. These data provides a blueprint for understanding human hippocampal development and a tool for investigating related diseases.


Single-cell RNA sequencing is used to catalogue and explore the developmental trajectories of more than 30,000 cells in the developing human hippocampus.


  
The promise and challenge of therapeutic genome editing 期刊论文
NATURE, 2020, 578 (7794) : 229-236
作者:  Zhong, Suijuan;  Ding, Wenyu;  Sun, Le;  Lu, Yufeng;  Dong, Hao;  Fan, Xiaoying;  Liu, Zeyuan;  Chen, Ruiguo;  Zhang, Shu;  Ma, Qiang;  Tang, Fuchou;  Wu, Qian;  Wang, Xiaoqun
收藏  |  浏览/下载:37/0  |  提交时间:2020/07/03

Genome editing, which involves the precise manipulation of cellular DNA sequences to alter cell fates and organism traits, has the potential to both improve our understanding of human genetics and cure genetic disease. Here I discuss the scientific, technical and ethical aspects of using CRISPR (clustered regularly interspaced short palindromic repeats) technology for therapeutic applications in humans, focusing on specific examples that highlight both opportunities and challenges. Genome editing is-or will soon be-in the clinic for several diseases, with more applications under development. The rapid pace of the field demands active efforts to ensure that this breakthrough technology is used responsibly to treat, cure and prevent genetic disease.


  
A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex 期刊论文
NATURE, 2018, 555 (7697) : 524-+
作者:  Zhong, Suijuan;  Zhang, Shu;  Fan, Xiaoying;  Wu, Qian;  Yan, Liying;  Dong, Ji;  Zhang, Haofeng;  Li, Long;  Sun, Le;  Pan, Na;  Xu, Xiaohui;  Tang, Fuchou;  Zhang, Jun;  Qiao, Jie;  Wang, Xiaoqun
收藏  |  浏览/下载:12/0  |  提交时间:2019/11/27