GSTDTAP

浏览/检索结果: 共88条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
The Mantle Transition Zone Hosts the Missing HIMU Reservoir Beneath Eastern China 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (9)
作者:  Qian, Sheng-Ping;  Nichols, Alexander R. L.;  Zhang, Le;  Xu, Yi-Gang;  Li, Jie;  Guo, Yu-Long;  Ren, Zhong-Yuan
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/02
late Cenozoic basalts  HIMU component  mantle transition zone  carbonated mantle source  
Synchronized tropical Pacific and extratropical variability during the past three decades 期刊论文
NATURE CLIMATE CHANGE, 2020, 10 (5) : 422-+
作者:  Yang, Jun-Chao;  Lin, Xiaopei;  Xie, Shang-Ping;  Zhang, Yu;  Kosaka, Yu;  Li, Ziguang
收藏  |  浏览/下载:7/0  |  提交时间:2020/05/13
Global Response of Evapotranspiration Ratio to Climate Conditions and Watershed Characteristics in a Changing Environment 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (7)
作者:  Liu, Zhiyong;  Cheng, Linyin;  Zhou, Guoyi;  Chen, Xiaohong;  Lin, Kairong;  Zhang, Wenfeng;  Chen, Xiuzhi;  Zhou, Ping
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/02
hydrological response  evapotranspiration  watershed characteristics  aridity index  relative contribution  
Multiscale Variability of Meiyu and Its Prediction: A New Review 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (7)
作者:  Ding, Yihui;  Liang, Ping;  Liu, Yanju;  Zhang, Yaocun
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/02
Meiyu  multiscale variability  East Asian summer monsoon  Meiyu prediction  
Injured adult neurons regress to an embryonic transcriptional growth state 期刊论文
NATURE, 2020, 581 (7806) : 77-+
作者:  Wang, Ruicong;  Li, Hongda;  Wu, Jianfeng;  Cai, Zhi-Yu;  Li, Baizhou;  Ni, Hengxiao;  Qiu, Xingfeng;  Chen, Hui;  Liu, Wei;  Yang, Zhang-Hua;  Liu, Min;  Hu, Jin;  Liang, Yaoji;  Lan, Ping;  Han, Jiahuai;  Mo, Wei
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

Grafts of spinal-cord-derived neural progenitor cells (NPCs) enable the robust regeneration of corticospinal axons and restore forelimb function after spinal cord injury(1)  however, the molecular mechanisms that underlie this regeneration are unknown. Here we perform translational profiling specifically of corticospinal tract (CST) motor neurons in mice, to identify their '  regenerative transcriptome'  after spinal cord injury and NPC grafting. Notably, both injury alone and injury combined with NPC grafts elicit virtually identical early transcriptomic responses in host CST neurons. However, in mice with injury alone this regenerative transcriptome is downregulated after two weeks, whereas in NPC-grafted mice this transcriptome is sustained. The regenerative transcriptome represents a reversion to an embryonic transcriptional state of the CST neuron. The huntingtin gene (Htt) is a central hub in the regeneration transcriptome  deletion of Htt significantly attenuates regeneration, which shows that Htt has a key role in neural plasticity after injury.


In mouse models of central nervous system injury, Htt is shown to be a key component of the regulatory program associated with reversion of the neuronal transcriptome to a less-mature state.


  
Vertical characteristics of aerosol hygroscopicity and impacts on optical properties over the North China Plain during winter 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (6) : 3931-3944
作者:  Liu, Quan;  Liu, Dantong;  Gao, Qian;  Tian, Ping;  Wang, Fei;  Zhao, Delong;  Bi, Kai;  Wu, Yangzhou;  Ding, Shuo;  Hu, Kang;  Zhang, Jiale;  Ding, Deping;  Zhao, Chunsheng
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/02
Anthropogenic Aerosols Significantly Reduce Mesoscale Convective System Occurrences and Precipitation Over Southern China in April 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (6)
作者:  Zhang, Lijuan;  Fu, Tzung-May;  Tian, Heng;  Ma, Yaping;  Chen, Jen-Ping;  Tsai, Tzu-Chin;  Tsai, I-Chun;  Meng, Zhiyong;  Yang, Xin
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/02
anthropogenic aerosols  precipitation  mesoscale convective systems  aerosol-cloud interactions  aerosol-radiation interactions  
The gut-brain axis mediates sugar preference 期刊论文
NATURE, 2020, 580 (7804) : 511-+
作者:  Wang, Ruicong;  Li, Hongda;  Wu, Jianfeng;  Cai, Zhi-Yu;  Li, Baizhou;  Ni, Hengxiao;  Qiu, Xingfeng;  Chen, Hui;  Liu, Wei;  Yang, Zhang-Hua;  Liu, Min;  Hu, Jin;  Liang, Yaoji;  Lan, Ping;  Han, Jiahuai;  Mo, Wei
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

The taste of sugar is one of the most basic sensory percepts for humans and other animals. Animals can develop a strong preference for sugar even if they lack sweet taste receptors, indicating a mechanism independent of taste(1-3). Here we examined the neural basis for sugar preference and demonstrate that a population of neurons in the vagal ganglia and brainstem are activated via the gut-brain axis to create preference for sugar. These neurons are stimulated in response to sugar but not artificial sweeteners, and are activated by direct delivery of sugar to the gut. Using functional imaging we monitored activity of the gut-brain axis, and identified the vagal neurons activated by intestinal delivery of glucose. Next, we engineered mice in which synaptic activity in this gut-to-brain circuit was genetically silenced, and prevented the development of behavioural preference for sugar. Moreover, we show that co-opting this circuit by chemogenetic activation can create preferences to otherwise less-preferred stimuli. Together, these findings reveal a gut-to-brain post-ingestive sugar-sensing pathway critical for the development of sugar preference. In addition, they explain the neural basis for differences in the behavioural effects of sweeteners versus sugar, and uncover an essential circuit underlying the highly appetitive effects of sugar.


Experiments in mice show that a population of neurons in the vagal ganglia respond to the presence of glucose in the gut and connect to neurons in the brainstem, revealing the circuit that underlies the neural basis for the behavioural preference for sugar.


  
A lysosomal switch triggers proteostasis renewal in the immortal C. elegans germ lineage (vol 551, pg 629, 2017) 期刊论文
NATURE, 2020, 580 (7802) : E5-E5
作者:  Lu, Zhihao;  Zou, Jianling;  Li, Shuang;  Topper, Michael J.;  Tao, Yong;  Zhang, Hao;  Jiao, Xi;  Xie, Wenbing;  Kong, Xiangqian;  Vaz, Michelle;  Li, Huili;  Cai, Yi;  Xia, Limin;  Huang, Peng;  Rodgers, Kristen;  Lee, Beverly;  Riemer, Joanne B.;  Day, Chi-Ping;  Yen, Ray-Whay Chiu;  Cui, Ying;  Wang, Yujiao;  Wang, Yanni;  Zhang, Weiqiang;  Easwaran, Hariharan;  Hulbert, Alicia;  Kim, KiBem;  Juergens, Rosalyn A.;  Yang, Stephen C.;  Battafarano, Richard J.;  Bush, Errol L.;  Broderick, Stephen R.;  Cattaneo, Stephen M.;  Brahmer, Julie R.;  Rudin, Charles M.;  Wrangle, John;  Mei, Yuping;  Kim, Young J.;  Zhang, Bin;  Wang, Ken Kang-Hsin;  Forde, Patrick M.;  Margolick, Joseph B.;  Nelkin, Barry D.;  Zahnow, Cynthia A.;  Pardoll, Drew M.;  Housseau, Franck;  Baylin, Stephen B.;  Shen, Lin;  Brock, Malcolm V.
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/03
Nightside condensation of iron in an ultrahot giant exoplanet 期刊论文
NATURE, 2020, 580 (7805) : 597-+
作者:  Lu, Zhihao;  Zou, Jianling;  Li, Shuang;  Topper, Michael J.;  Tao, Yong;  Zhang, Hao;  Jiao, Xi;  Xie, Wenbing;  Kong, Xiangqian;  Vaz, Michelle;  Li, Huili;  Cai, Yi;  Xia, Limin;  Huang, Peng;  Rodgers, Kristen;  Lee, Beverly;  Riemer, Joanne B.;  Day, Chi-Ping;  Yen, Ray-Whay Chiu;  Cui, Ying;  Wang, Yujiao;  Wang, Yanni;  Zhang, Weiqiang;  Easwaran, Hariharan;  Hulbert, Alicia;  Kim, KiBem;  Juergens, Rosalyn A.;  Yang, Stephen C.;  Battafarano, Richard J.;  Bush, Errol L.;  Broderick, Stephen R.;  Cattaneo, Stephen M.;  Brahmer, Julie R.;  Rudin, Charles M.;  Wrangle, John;  Mei, Yuping;  Kim, Young J.;  Zhang, Bin;  Wang, Ken Kang-Hsin;  Forde, Patrick M.;  Margolick, Joseph B.;  Nelkin, Barry D.;  Zahnow, Cynthia A.;  Pardoll, Drew M.;  Housseau, Franck;  Baylin, Stephen B.;  Shen, Lin;  Brock, Malcolm V.
收藏  |  浏览/下载:57/0  |  提交时间:2020/07/03

Ultrahot giant exoplanets receive thousands of times Earth'  s insolation(1,2). Their high-temperature atmospheres (greater than 2,000 kelvin) are ideal laboratories for studying extreme planetary climates and chemistry(3-5). Daysides are predicted to be cloud-free, dominated by atomic species(6) and much hotter than nightsides(5,7,8). Atoms are expected to recombine into molecules over the nightside(9), resulting in different day and night chemistries. Although metallic elements and a large temperature contrast have been observed(10-14), no chemical gradient has been measured across the surface of such an exoplanet. Different atmospheric chemistry between the day-to-night ('  evening'  ) and night-to-day ('  morning'  ) terminators could, however, be revealed as an asymmetric absorption signature during transit(4,7,15). Here we report the detection of an asymmetric atmospheric signature in the ultrahot exoplanet WASP-76b. We spectrally and temporally resolve this signature using a combination of high-dispersion spectroscopy with a large photon-collecting area. The absorption signal, attributed to neutral iron, is blueshifted by -11 +/- 0.7 kilometres per second on the trailing limb, which can be explained by a combination of planetary rotation and wind blowing from the hot dayside(16). In contrast, no signal arises from the nightside close to the morning terminator, showing that atomic iron is not absorbing starlight there. We conclude that iron must therefore condense during its journey across the nightside.


Absorption lines of iron in the dayside atmosphere of an ultrahot giant exoplanet disappear after travelling across the nightside, showing that the iron has condensed during its travel.