GSTDTAP

浏览/检索结果: 共41条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Increase of High Molecular Weight Organosulfate With Intensifying Urban Air Pollution in the Megacity Beijing 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (10)
作者:  Xie, Qiaorong;  Li, Ying;  Yue, Siyao;  Su, Sihui;  Cao, Dong;  Xu, Yisheng;  Chen, Jing;  Tong, Haijie;  Su, Hang;  Cheng, Yafang;  Zhao, Wanyu;  Hu, Wei;  Wang, Zhe;  Yang, Ting;  Pan, Xiaole;  Sun, Yele;  Wang, Zifa;  Liu, Cong-Qiang;  Kawamura, Kimitaka;  Jiang, Guibin;  Shiraiwa, Manabu;  Fu, Pingqing
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/02
Organic aerosol  Organosulfates  FT-ICR MS  Secondary organic aerosol  Volatile organic compounds  
Electromechanical coupling in the hyperpolarization-activated K+ channel KAT1 期刊论文
NATURE, 2020, 583 (7814) : 145-+
作者:  Jin, Zhenming;  Du, Xiaoyu;  Xu, Yechun;  Deng, Yongqiang;  Liu, Meiqin;  Zhao, Yao;  Zhang, Bing;  Li, Xiaofeng;  Zhang, Leike;  Peng, Chao;  Duan, Yinkai;  Yu, Jing;  Wang, Lin;  Yang, Kailin;  Liu, Fengjiang;  Jiang, Rendi;  Yang, Xinglou;  You, Tian;  Liu, Xiaoce
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

Voltage-gated potassium (K-v) channels coordinate electrical signalling and control cell volume by gating in response to membrane depolarization or hyperpolarization. However, although voltage-sensing domains transduce transmembrane electric field changes by a common mechanism involving the outward or inward translocation of gating charges(1-3), the general determinants of channel gating polarity remain poorly understood(4). Here we suggest a molecular mechanism for electromechanical coupling and gating polarity in non-domain-swapped K-v channels on the basis of the cryo-electron microscopy structure of KAT1, the hyperpolarization-activated K-v channel from Arabidopsis thaliana. KAT1 displays a depolarized voltage sensor, which interacts with a closed pore domain directly via two interfaces and indirectly via an intercalated phospholipid. Functional evaluation of KAT1 structure-guided mutants at the sensor-pore interfaces suggests a mechanism in which direct interaction between the sensor and the C-linker hairpin in the adjacent pore subunit is the primary determinant of gating polarity. We suggest that an inward motion of the S4 sensor helix of approximately 5-7 angstrom can underlie a direct-coupling mechanism, driving a conformational reorientation of the C-linker and ultimately opening the activation gate formed by the S6 intracellular bundle. This direct-coupling mechanism contrasts with allosteric mechanisms proposed for hyperpolarization-activated cyclic nucleotide-gated channels(5), and may represent an unexpected link between depolarization- and hyperpolarization-activated channels.


The cryo-electron microscopy structure of the hyperpolarization-activated K+ channel KAT1 points to a direct-coupling mechanism between S4 movement and the reorientation of the C-linker.


  
Observation Constrained Aromatic Emissions in Shanghai, China 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (6)
作者:  Wang, Hongli;  Yan, Rusha;  Xu, Tingting;  Wang, Yuhang;  Wang, Qian;  Zhang, Tianqi;  An, Jingyu;  Huang, Cheng;  Gao, Yaqin;  Gao, Yang;  Li, Xiang;  Yu, Chao;  Jing, Shengao;  Qiao, Liping;  Lou, Shengrong;  Tao, Shikang;  Li, Yingjie
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/02
aromatics  observation-constrained  emissions  Shanghai  
Nanoplasma-enabled picosecond switches for ultrafast electronics (vol 579, pg 534, 2020) 期刊论文
NATURE, 2020, 580 (7803) : E8-E8
作者:  Li, Jing;  Xu, Chuanliang;  Lee, Hyung Joo;  Ren, Shancheng;  Zi, Xiaoyuan;  Zhang, Zhiming;  Wang, Haifeng;  Yu, Yongwei;  Yang, Chenghua;  Gao, Xiaofeng;  Hou, Jianguo;  Wang, Linhui;  Yang, Bo;  Yang, Qing;  Ye, Huamao;  Zhou, Tie;  Lu, Xin;  Wang, Yan;  Qu, Min;  Yang, Qingsong;  Zhang, Wenhui;  Shah, Nakul M.;  Pehrsson, Erica C.;  Wang, Shuo;  Wang, Zengjun;  Jiang, Jun;  Zhu, Yan;  Chen, Rui;  Chen, Huan;  Zhu, Feng;  Lian, Bijun;  Li, Xiaoyun;  Zhang, Yun;  Wang, Chao;  Wang, Yue;  Xiao, Guangan;  Jiang, Junfeng;  Yang, Yue;  Liang, Chaozhao;  Hou, Jianquan;  Han, Conghui;  Chen, Ming;  Jiang, Ning;  Zhang, Dahong;  Wu, Song;  Yang, Jinjian;  Wang, Tao;  Chen, Yongliang;  Cai, Jiantong;  Yang, Wenzeng;  Xu, Jun;  Wang, Shaogang;  Gao, Xu;  Wang, Ting;  Sun, Yinghao
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/03
Action of a minimal contractile bactericidal nanomachine 期刊论文
NATURE, 2020, 580 (7805) : 658-+
作者:  Peng, Ruchao;  Xu, Xin;  Jing, Jiamei;  Wang, Min;  Peng, Qi;  Liu, Sheng;  Wu, Ying;  Bao, Xichen;  Wang, Peiyi;  Qi, Jianxun;  Gao, George F.;  Shi, Yi
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

The authors report near-atomic resolution structures of the R-type bacteriocin from Pseudomonas aeruginosa in the pre-contraction and post-contraction states, and these structures provide insight into the mechanism of action of molecular syringes.


R-type bacteriocins are minimal contractile nanomachines that hold promise as precision antibiotics(1-4). Each bactericidal complex uses a collar to bridge a hollow tube with a contractile sheath loaded in a metastable state by a baseplate scaffold(1,2). Fine-tuning of such nucleic acid-free protein machines for precision medicine calls for an atomic description of the entire complex and contraction mechanism, which is not available from baseplate structures of the (DNA-containing) T4 bacteriophage(5). Here we report the atomic model of the complete R2 pyocin in its pre-contraction and post-contraction states, each containing 384 subunits of 11 unique atomic models of 10 gene products. Comparison of these structures suggests the following sequence of events during pyocin contraction: tail fibres trigger lateral dissociation of baseplate triplexes  the dissociation then initiates a cascade of events leading to sheath contraction  and this contraction converts chemical energy into mechanical force to drive the iron-tipped tube across the bacterial cell surface, killing the bacterium.


  
Improved protein structure prediction using potentials from deep learning 期刊论文
NATURE, 2020, 577 (7792) : 706-+
作者:  Ma, Runze;  Cao, Duanyun;  Zhu, Chongqin;  Tian, Ye;  Peng, Jinbo;  Guo, Jing;  Chen, Ji;  Li, Xin-Zheng;  Francisco, Joseph S.;  Zeng, Xiao Cheng;  Xu, Li-Mei;  Wang, En-Ge;  Jiang, Ying
收藏  |  浏览/下载:142/0  |  提交时间:2020/07/03

Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence(1). This problem is of fundamental importance as the structure of a protein largely determines its function(2)  however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made by leveraging genetic information. It is possible to infer which amino acid residues are in contact by analysing covariation in homologous sequences, which aids in the prediction of protein structures(3). Here we show that we can train a neural network to make accurate predictions of the distances between pairs of residues, which convey more information about the structure than contact predictions. Using this information, we construct a potential of mean force(4) that can accurately describe the shape of a protein. We find that the resulting potential can be optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures. The resulting system, named AlphaFold, achieves high accuracy, even for sequences with fewer homologous sequences. In the recent Critical Assessment of Protein Structure Prediction(5) (CASP13)-a blind assessment of the state of the field-AlphaFold created high-accuracy structures (with template modelling (TM) scores(6) of 0.7 or higher) for 24 out of 43 free modelling domains, whereas the next best method, which used sampling and contact information, achieved such accuracy for only 14 out of 43 domains. AlphaFold represents a considerable advance in protein-structure prediction. We expect this increased accuracy to enable insights into the function and malfunction of proteins, especially in cases for which no structures for homologous proteins have been experimentally determined(7).


  
Recovered Tibetan antelope at risk again 期刊论文
SCIENCE, 2019, 366 (6462) : 194-194
作者:  Pei, Jie;  Wang, Li;  Xu, Wenjing;  Kurz, David J.;  Geng, Jing;  Fang, Huajun;  Guo, Xinlei;  Niu, Zheng
收藏  |  浏览/下载:7/0  |  提交时间:2019/11/27
High thermoelectric performance in low-cost SnS0.91Se0.09 crystals 期刊论文
SCIENCE, 2019, 365 (6460) : 1418-+
作者:  He, Wenke;  Wang, Dongyang;  Wu, Haijun;  Xiao, Yu;  Zhang, Yang;  He, Dongsheng;  Feng, Yue;  Hao, Yu-Jie;  Dong, Jin-Feng;  Chetty, Raju;  Hao, Lijie;  Chen, Dongfeng;  Qin, Jianfei;  Yang, Qiang;  Li, Xin;  Song, Jian-Ming;  Zhu, Yingcai;  Xu, Wei;  Niu, Changlei;  Li, Xin;  Wang, Guangtao;  Liu, Chang;  Ohta, Michibiro;  Pennycook, Stephen J.;  He, Jiaqing;  Li, Jing-Feng;  Zhao, Li-Dong
收藏  |  浏览/下载:22/0  |  提交时间:2019/11/27
How can carbon capture utilization and storage be incentivized in China? A perspective based on the 45Q tax credit provisions 期刊论文
ENERGY POLICY, 2019, 132: 1229-1240
作者:  Fan, Jing-Li;  Xu, Mao;  Yang, Lin;  Zhang, Xian;  Li, Fengyu
收藏  |  浏览/下载:10/0  |  提交时间:2019/11/27
Subsidy policy  CCUS retrofitting investment  45Q tax credit provisions  Real options  China  
Factors Affecting the Variability of Maximum Potential Intensity (MPI) of Tropical Cyclones Over the North Atlantic 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (13) : 6654-6668
作者:  Xu, Jing;  Wang, Yuqing;  Yang, Chi
收藏  |  浏览/下载:9/0  |  提交时间:2019/11/27
tropical cyclone  maximum potential intensity (MPI)  variability