GSTDTAP

浏览/检索结果: 共40条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
A remnant planetary core in the hot-Neptune desert 期刊论文
NATURE, 2020, 583 (7814) : 39-+
作者:  David J. Armstrong;  Thé;  o A. Lopez;  Vardan Adibekyan;  Richard A. Booth;  Edward M. Bryant;  Karen A. Collins;  Magali Deleuil;  Alexandre Emsenhuber;  Chelsea X. Huang;  George W. King;  Jorge Lillo-Box;  Jack J. Lissauer;  Elisabeth Matthews;  Olivier Mousis;  Louise D. Nielsen;  Hugh Osborn;  Jon Otegi;  Nuno C. Santos;  ;  rgio G. Sousa;  Keivan G. Stassun;  Dimitri Veras;  Carl Ziegler;  Jack S. Acton;  Jose M. Almenara;  David R. Anderson;  David Barrado;  Susana C. C. Barros;  Daniel Bayliss;  Claudia Belardi;  Francois Bouchy;  ;  sar Briceñ;  o;  Matteo Brogi;  David J. A. Brown;  Matthew R. Burleigh;  Sarah L. Casewell;  Alexander Chaushev;  David R. Ciardi;  Kevin I. Collins;  Knicole D. Coló;  n;  Benjamin F. Cooke;  Ian J. M. Crossfield;  Rodrigo F. Dí;  az;  Elisa Delgado Mena;  Olivier D. S. Demangeon;  Caroline Dorn;  Xavier Dumusque;  Philipp Eigmü;  ller;  Michael Fausnaugh;  Pedro Figueira;  Tianjun Gan;  Siddharth Gandhi;  Samuel Gill;  Erica J. Gonzales;  Michael R. Goad;  Maximilian N. Gü;  nther;  Ravit Helled;  Saeed Hojjatpanah;  Steve B. Howell;  James Jackman;  James S. Jenkins;  Jon M. Jenkins;  Eric L. N. Jensen;  Grant M. Kennedy;  David W. Latham;  Nicholas Law;  Monika Lendl;  Michael Lozovsky;  Andrew W. Mann;  Maximiliano Moyano;  James McCormac;  Farzana Meru;  Christoph Mordasini;  Ares Osborn;  Don Pollacco;  Didier Queloz;  Liam Raynard;  George R. Ricker;  Pamela Rowden;  Alexandre Santerne;  Joshua E. Schlieder;  Sara Seager;  Lizhou Sha;  Thiam-Guan Tan;  Rosanna H. Tilbrook;  Eric Ting;  Sté;  phane Udry;  Roland Vanderspek;  Christopher A. Watson;  Richard G. West;  Paul A. Wilson;  Joshua N. Winn;  Peter Wheatley;  Jesus Noel Villasenor;  Jose I. Vines;  Zhuchang Zhan
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/06

The interiors of giant planets remain poorly understood. Even for the planets in the Solar System, difficulties in observation lead to large uncertainties in the properties of planetary cores. Exoplanets that have undergone rare evolutionary processes provide a route to understanding planetary interiors. Planets found in and near the typically barren hot-Neptune '  desert'  (1,2)(a region in mass-radius space that contains few planets) have proved to be particularly valuable in this regard. These planets include HD149026b(3), which is thought to have an unusually massive core, and recent discoveries such as LTT9779b(4)and NGTS-4b(5), on which photoevaporation has removed a substantial part of their outer atmospheres. Here we report observations of the planet TOI-849b, which has a radius smaller than Neptune'  s but an anomalously large mass of39.1-2.6+2.7Earth masses and a density of5.2-0.8+0.7grams per cubic centimetre, similar to Earth'  s. Interior-structure models suggest that any gaseous envelope of pure hydrogen and helium consists of no more than3.9-0.9+0.8 per cent of the total planetary mass. The planet could have been a gas giant before undergoing extreme mass loss via thermal self-disruption or giant planet collisions, or it could have avoided substantial gas accretion, perhaps through gap opening or late formation(6). Although photoevaporation rates cannot account for the mass loss required to reduce a Jupiter-like gas giant, they can remove a small (a few Earth masses) hydrogen and helium envelope on timescales of several billion years, implying that any remaining atmosphere on TOI-849b is likely to be enriched by water or other volatiles from the planetary interior. We conclude that TOI-849b is the remnant core of a giant planet.


Observations of TOI-849b reveal a radius smaller than Neptune'  s but a large mass of about 40 Earth masses, indicating that the planet is the remnant core of a gas giant.


  
Not all driver mutations are equal 期刊论文
NATURE, 2020, 580 (7805) : 595-596
作者:  Legendre, Lucas J.;  Rubilar-Rogers, David;  Musser, Grace M.;  Davis, Sarah N.;  Otero, Rodrigo A.;  Vargas, Alexander O.;  Clarke, Julia A.
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

A study of cancer-associated mutations in normal endometrial glands of the uterus has now been performed using whole-genome sequencing. The analysis sheds light on the early changes that lead to invasive disease.


  
WHY HEALTHY ARTERIES MIGHT HELP KIDS AVOID COVID COMPLICATIONS 期刊论文
NATURE, 2020, 582 (7812) : 324-325
作者:  Niu, Jixiao;  Sun, Yang;  Chen, Baoen;  Zheng, Baohui;  Jarugumilli, Gopala K.;  Walker, Sarah R.;  Hata, Aaron N.;  Mino-Kenudson, Mari;  Frank, David A.;  Wu, Xu
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03
Coronavirus: limit economic damage 期刊论文
NATURE, 2020, 578 (7796) : 515-515
作者:  Baronti, Lorenzo;  Guzzetti, Ileana;  Ebrahimi, Parisa;  Friebe Sandoz, Sarah;  Steiner, Emilie;  Schlagnitweit, Judith;  Fromm, Bastian;  Silva, Luis;  Fontana, Carolina;  Chen, Alan A.;  Petzold, Katja
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03
A PHYSICIST TALKS TO A BIOLOGIST 期刊论文
NATURE, 2020, 577 (7789) : 283-284
作者:  Bohndiek, Sarah
收藏  |  浏览/下载:0/0  |  提交时间:2020/07/03
HBO1 is required for the maintenance of leukaemia stem cells 期刊论文
NATURE, 2020, 577 (7789) : 266-+
作者:  MacPherson, Laura;  Anokye, Juliana;  Yeung, Miriam M.;  Lam, Enid Y. N.;  Chan, Yih-Chih;  Weng, Chen-Fang;  Yeh, Paul;  Knezevic, Kathy;  Butler, Miriam S.;  Hoegl, Annabelle;  Chan, Kah-Lok;  Burr, Marian L.;  Gearing, Linden J.;  Willson, Tracy;  Liu, Joy;  Choi, Jarny;  Yang, Yuqing;  Bilardi, Rebecca A.;  Falk, Hendrik;  Nghi Nguyen;  Stupple, Paul A.;  Peat, Thomas S.;  Zhang, Ming;  de Silva, Melanie;  Carrasco-Pozo, Catalina;  Avery, Vicky M.;  Khoo, Poh Sim;  Dolezal, Olan;  Dennis, Matthew L.;  Nuttall, Stewart;  Surjadi, Regina;  Newman, Janet;  Ren, Bin;  Leaver, David J.;  Sun, Yuxin;  Baell, Jonathan B.;  Dovey, Oliver;  Vassiliou, George S.;  Grebien, Florian;  Dawson, Sarah-Jane;  Street, Ian P.;  Monahan, Brendon J.;  Burns, Christopher J.;  Choudhary, Chunaram;  Blewitt, Marnie E.;  Voss, Anne K.;  Thomas, Tim;  Dawson, Mark A.
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs)(1). Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs. We identify the MYST acetyltransferase HBO1 (also known as KAT7 or MYST2) and several known members of the HBO1 protein complex as critical regulators of LSC maintenance. Using CRISPR domain screening and quantitative mass spectrometry, we identified the histone acetyltransferase domain of HBO1 as being essential in the acetylation of histone H3 at K14. H3 acetylated at K14 (H3K14ac) facilitates the processivity of RNA polymerase II to maintain the high expression of key genes (including Hoxa9 and Hoxa10) that help to sustain the functional properties of LSCs. To leverage this dependency therapeutically, we developed a highly potent small-molecule inhibitor of HBO1 and demonstrate its mode of activity as a competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic data and showed efficacy in a broad range of human cell lines and primary AML cells from patients. These biological, structural and chemical insights into a therapeutic target in AML will enable the clinical translation of these findings.


  
Structure of the human metapneumovirus polymerase phosphoprotein complex 期刊论文
NATURE, 2020, 577 (7789) : 275-+
作者:  Pan, Junhua;  Qian, Xinlei;  Lattmann, Simon;  El Sahili, Abbas;  Yeo, Tiong Han;  Jia, Huan;  Cressey, Tessa;  Ludeke, Barbara;  Noton, Sarah;  Kalocsay, Marian;  Fearns, Rachel;  Lescar, Julien
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) cause severe respiratory diseases in infants and elderly adults(1). No vaccine or effective antiviral therapy currently exists to control RSV or HMPV infections. During viral genome replication and transcription, the tetrameric phosphoprotein P serves as a crucial adaptor between the ribonucleoprotein template and the L protein, which has RNA-dependent RNA polymerase (RdRp), GDP polyribonucleotidyltransferase and cap-specific methyltransferase activities(2,3). How P interacts with L and mediates the association with the free form of N and with the ribonucleoprotein is not clear for HMPV or other major human pathogens, including the viruses that cause measles, Ebola and rabies. Here we report a cryo-electron microscopy reconstruction that shows the ring-shaped structure of the polymerase and capping domains of HMPV-L bound to a tetramer of P. The connector and methyltransferase domains of L are mobile with respect to the core. The putative priming loop that is important for the initiation of RNA synthesis is fully retracted, which leaves space in the active-site cavity for RNA elongation. P interacts extensively with the N-terminal region of L, burying more than 4,016 angstrom(2) of the molecular surface area in the interface. Two of the four helices that form the coiled-coil tetramerization domain of P, and long C-terminal extensions projecting from these two helices, wrap around the L protein in a manner similar to tentacles. The structural versatility of the four P protomers-which are largely disordered in their free state-demonstrates an example of a '  folding-upon-partner-binding'  mechanism for carrying out P adaptor functions. The structure shows that P has the potential to modulate multiple functions of L and these results should accelerate the design of specific antiviral drugs.


  
Hair-bearing human skin generated entirely from pluripotent stem cells 期刊论文
NATURE, 2020
作者:  von Appen, Alexander;  LaJoie, Dollie;  Johnson, Isabel E.;  Trnka, Michael J.;  Pick, Sarah M.;  Burlingame, Alma L.;  Ullman, Katharine S.;  Frost, Adam
收藏  |  浏览/下载:52/0  |  提交时间:2020/07/03

Skin organoids generated in vitro from human pluripotent stem cells form complex, multilayered skin tissue with hair follicles, sebaceous glands and neural circuitry, and integrate with endogenous skin when grafted onto immunocompromised mice.


The skin is a multilayered organ, equipped with appendages (that is, follicles and glands), that is critical for regulating body temperature and the retention of bodily fluids, guarding against external stresses and mediating the sensation of touch and pain(1,2). Reconstructing appendage-bearing skin in cultures and in bioengineered grafts is a biomedical challenge that has yet to be met(3-9). Here we report an organoid culture system that generates complex skin from human pluripotent stem cells. We use stepwise modulation of the transforming growth factor beta (TGF beta) and fibroblast growth factor (FGF) signalling pathways to co-induce cranial epithelial cells and neural crest cells within a spherical cell aggregate. During an incubation period of 4-5 months, we observe the emergence of a cyst-like skin organoid composed of stratified epidermis, fat-rich dermis and pigmented hair follicles that are equipped with sebaceous glands. A network of sensory neurons and Schwann cells form nerve-like bundles that target Merkel cells in organoid hair follicles, mimicking the neural circuitry associated with human touch. Single-cell RNA sequencing and direct comparison to fetal specimens suggest that the skin organoids are equivalent to the facial skin of human fetuses in the second trimester of development. Moreover, we show that skin organoids form planar hair-bearing skin when grafted onto nude mice. Together, our results demonstrate that nearly complete skin can self-assemble in vitro and be used to reconstitute skin in vivo. We anticipate that our skin organoids will provide a foundation for future studies of human skin development, disease modelling and reconstructive surgery.


  
Femtosecond-to-millisecond structural changes in a light-driven sodium pump 期刊论文
NATURE, 2020, 583 (7815) : 314-+
作者:  Moore, Luiza;  Leongamornlert, Daniel;  Coorens, Tim H. H.;  Sanders, Mathijs A.;  Ellis, Peter;  Dentro, Stefan C.;  Dawson, Kevin J.;  Butler, Tim;  Rahbari, Raheleh;  Mitchell, Thomas J.;  Maura, Francesco;  Nangalia, Jyoti;  Tarpey, Patrick S.;  Brunner, Simon F.;  Lee-Six, Henry;  Hooks, Yvette;  Moody, Sarah;  Mahbubani, Krishnaa T.;  Jimenez-Linan, Mercedes;  Brosens, Jan J.;  Iacobuzio-Donahue, Christine A.;  Martincorena, Inigo;  Saeb-Parsy, Kourosh;  Campbell, Peter J.;  Stratton, Michael R.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

Light-driven sodium pumps actively transport small cations across cellular membranes(1). These pumps are used by microorganisms to convert light into membrane potential and have become useful optogenetic tools with applications in neuroscience. Although the resting state structures of the prototypical sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) have been solved(2,3), it is unclear how structural alterations overtime allow sodium to be translocated against a concentration gradient. Here, using the Swiss X-ray Free Electron Laser(4), we have collected serial crystallographic data at ten pump-probe delays from femtoseconds to milliseconds. High-resolution structural snapshots throughout the KR2 photocycle show how retinal isomerization is completed on the femtosecond timescale and changes the local structure of the binding pocket in the early nanoseconds. Subsequent rearrangements and deprotonation of the retinal Schiff base open an electrostatic gate in microseconds. Structural and spectroscopic data, in combination with quantum chemical calculations, indicate that a sodium ion bind stransiently close to the retinal within one millisecond. In the last structural intermediate, at 20 milliseconds after activation, we identified a potential second sodium-binding site close to the extracellular exit. These results provide direct molecular insight into the dynamics of active cation transport across biological membranes.


  
Coronavirus blood-clot mystery intensifies 期刊论文
NATURE, 2020, 581 (7808) : 250-250
作者:  DeWeerdt, Sarah
收藏  |  浏览/下载:0/0  |  提交时间:2020/07/03

Research begins to pick apart the mechanisms behind a deadly COVID-19 complication.


Research begins to pick apart the mechanisms behind a deadly COVID-19 complication.