GSTDTAP

浏览/检索结果: 共32条,第1-10条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
GENDER-EQUITY AUDITS URGED FOR GRANT RECIPIENTS US national academy pushes to make grants contingent on gender equity 期刊论文
NATURE, 2020, 580 (7802) : 296-296
作者:  Subbaraman, Nidhi;  Davis, Sharde;  Woods, Joy Melody
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Funders should audit institutions'  policies to include and promote women, recommends report.


Funders should audit institutions'  policies to include and promote women, recommends report.


  
Scientists exposed to coronavirus wonder: why weren't we notified? 期刊论文
NATURE, 2020, 579 (7800) : 480-481
作者:  Subbaraman, Nidhi
收藏  |  浏览/下载:4/0  |  提交时间:2020/07/03

US authorities are failing to test people and notify their contacts, a cornerstone of outbreak response.


Scientists exposed to coronavirus: why weren'  t we notified? US authorities are failing to test people and notify their contacts, a cornerstone of outbreak response.


  
Where I work 期刊论文
NATURE, 2020, 582 (7813) : 600-600
作者:  Bodin, Madeline;  Khan, Christin
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

US federal biologist Christin Khan embraces risk above the Atlantic Ocean to monitor a rare species.


US federal biologist Christin Khan embraces risk above the Atlantic Ocean to monitor a rare species.


  
Localization and delocalization of light in photonic moire lattices 期刊论文
NATURE, 2020, 577 (7788) : 42-+
作者:  Wang, Peng;  Zheng, Yuanlin;  Chen, Xianfeng;  Huang, Changming;  Kartashov, Yaroslav V.;  Torner, Lluis;  Konotop, Vladimir V.;  Ye, Fangwei
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Moire lattices consist of two superimposed identical periodic structures with a relative rotation angle. Moire lattices have several applications in everyday life, including artistic design, the textile industry, architecture, image processing, metrology and interferometry. For scientific studies, they have been produced using coupled graphene-hexagonal boron nitride monolayers(1,2), graphene-graphene layers(3,4) and graphene quasicrystals on a silicon carbide surface(5). The recent surge of interest in moire lattices arises from the possibility of exploring many salient physical phenomena in such systems  examples include commensurable-incommensurable transitions and topological defects(2), the emergence of insulating states owing to band flattening(3,6), unconventional superconductivity(4) controlled by the rotation angle(7,8), the quantum Hall effect(9), the realization of non-Abelian gauge potentials(10) and the appearance of quasicrystals at special rotation angles(11). A fundamental question that remains unexplored concerns the evolution of waves in the potentials defined by moire lattices. Here we experimentally create two-dimensional photonic moire lattices, which-unlike their material counterparts-have readily controllable parameters and symmetry, allowing us to explore transitions between structures with fundamentally different geometries (periodic, general aperiodic and quasicrystal). We observe localization of light in deterministic linear lattices that is based on flatband physics(6), in contrast to previous schemes based on light diffusion in optical quasicrystals(12), where disorder is required(13) for the onset of Anderson localization(14) (that is, wave localization in random media). Using commensurable and incommensurable moire patterns, we experimentally demonstrate the twodimensional localization-delocalization transition of light. Moire lattices may feature an almost arbitrary geometry that is consistent with the crystallographic symmetry groups of the sublattices, and therefore afford a powerful tool for controlling the properties of light patterns and exploring the physics of periodic-aperiodic phase transitions and two-dimensional wavepacket phenomena relevant to several areas of science, including optics, acoustics, condensed matter and atomic physics.


  
Poultry through time 期刊论文
NATURE, 2020, 579 (7799) : 351-352
作者:  Cathomas, Flurin;  Russo, Scott J.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/03

A newly discovered 66.7-million-year-old fossil bird excavated in Belgium provides us with the best evidence so far for understanding when the living groups of birds first evolved and began to diverge.


Fossil sheds light on the evolution of crown-group birds.


  
Exploring dynamical phase transitions with cold atoms in an optical cavity 期刊论文
NATURE, 2020, 580 (7805) : 602-+
作者:  Halbach, Rebecca;  Miesen, Pascal;  Joosten, Joep;  Taskopru, Ezgi;  Rondeel, Inge;  Pennings, Bas;  Vogels, Chantal B. F.;  Merkling, Sarah H.;  Koenraadt, Constantianus J.;  Lambrechts, Louis;  van Rij, Ronald P.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Interactions between light and an ensemble of strontium atoms in an optical cavity can serve as a testbed for studying dynamical phase transitions, which are currently not well understood.


Interactions between atoms and light in optical cavities provide a means of investigating collective (many-body) quantum physics in controlled environments. Such ensembles of atoms in cavities have been proposed for studying collective quantum spin models, where the atomic internal levels mimic a spin degree of freedom and interact through long-range interactions tunable by changing the cavity parameters(1-4). Non-classical steady-state phases arising from the interplay between atom-light interactions and dissipation of light from the cavity have previously been investigated(5-11). These systems also offer the opportunity to study dynamical phases of matter that are precluded from existence at equilibrium but can be stabilized by driving a system out of equilibrium(12-16), as demonstrated by recent experiments(17-22). These phases can also display universal behaviours akin to standard equilibrium phase transitions(8,23,24). Here, we use an ensemble of about a million strontium-88 atoms in an optical cavity to simulate a collective Lipkin-Meshkov-Glick model(25,26), an iconic model in quantum magnetism, and report the observation of distinct dynamical phases of matter in this system. Our system allows us to probe the dependence of dynamical phase transitions on system size, initial state and other parameters. These observations can be linked to similar dynamical phases in related systems, including the Josephson effect in superfluid helium(27), or coupled atomic(28) and solid-state polariton(29) condensates. The system itself offers potential for generation of metrologically useful entangled states in optical transitions, which could permit quantum enhancement in state-of-the-art atomic clocks(30,31).


  
Ionic solids from common colloids 期刊论文
NATURE, 2020, 580 (7804) : 487-+
作者:  Delord, T.;  Huillery, P.;  Nicolas, L.;  Hetet, G.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/03

Oppositely charged colloidal particles are assembled in water through an approach that allows electrostatic interactions to be precisely tuned to generate macroscopic single crystals.


From rock salt to nanoparticle superlattices, complex structure can emerge from simple building blocks that attract each other through Coulombic forces(1-4). On the micrometre scale, however, colloids in water defy the intuitively simple idea of forming crystals from oppositely charged partners, instead forming non-equilibrium structures such as clusters and gels(5-7). Although various systems have been engineered to grow binary crystals(8-11), native surface charge in aqueous conditions has not been used to assemble crystalline materials. Here we form ionic colloidal crystals in water through an approach that we refer to as polymer-attenuated Coulombic self-assembly. The key to crystallization is the use of a neutral polymer to keep particles separated by well defined distances, allowing us to tune the attractive overlap of electrical double layers, directing particles to disperse, crystallize or become permanently fixed on demand. The nucleation and growth of macroscopic single crystals is demonstrated by using the Debye screening length to fine-tune assembly. Using a variety of colloidal particles and commercial polymers, ionic colloidal crystals isostructural to caesium chloride, sodium chloride, aluminium diboride and K4C60 are selected according to particle size ratios. Once fixed by simply diluting out solution salts, crystals are pulled out of the water for further manipulation, demonstrating an accurate translation from solution-phase assembly to dried solid structures. In contrast to other assembly approaches, in which particles must be carefully engineered to encode binding information(12-18), polymer-attenuated Coulombic self-assembly enables conventional colloids to be used as model colloidal ions, primed for crystallization.


  
An open-source drug discovery platform enables ultra-large virtual screens 期刊论文
NATURE, 2020, 580 (7805) : 663-+
作者:  Peron, Simon;  Pancholi, Ravi;  Voelcker, Bettina;  Wittenbach, Jason D.;  olafsdottir, H. Freyja;  Freeman, Jeremy;  Svoboda, Karel
收藏  |  浏览/下载:33/0  |  提交时间:2020/07/03

VirtualFlow, an open-source drug discovery platform, enables the efficient preparation and virtual screening of ultra-large ligand libraries to identify molecules that bind with high affinity to target proteins.


On average, an approved drug currently costs US$2-3 billion and takes more than 10 years to develop(1). In part, this is due to expensive and time-consuming wet-laboratory experiments, poor initial hit compounds and the high attrition rates in the (pre-)clinical phases. Structure-based virtual screening has the potential to mitigate these problems. With structure-based virtual screening, the quality of the hits improves with the number of compounds screened(2). However, despite the fact that large databases of compounds exist, the ability to carry out large-scale structure-based virtual screening on computer clusters in an accessible, efficient and flexible manner has remained difficult. Here we describe VirtualFlow, a highly automated and versatile open-source platform with perfect scaling behaviour that is able to prepare and efficiently screen ultra-large libraries of compounds. VirtualFlow is able to use a variety of the most powerful docking programs. Using VirtualFlow, we prepared one of the largest and freely available ready-to-dock ligand libraries, with more than 1.4 billion commercially available molecules. To demonstrate the power of VirtualFlow, we screened more than 1 billion compounds and identified a set of structurally diverse molecules that bind to KEAP1 with submicromolar affinity. One of the lead inhibitors (iKeap1) engages KEAP1 with nanomolar affinity (dissociation constant (K-d) = 114 nM) and disrupts the interaction between KEAP1 and the transcription factor NRF2. This illustrates the potential of VirtualFlow to access vast regions of the chemical space and identify molecules that bind with high affinity to target proteins.


  
Extended US travel ban harms global science 期刊论文
NATURE, 2020, 579 (7797) : 9-9
作者:  Ajami, Nadim J.;  Wargo, Jennifer A.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

From preparing for pandemics to boosting crop yields, Nigerian scientists who work and train abroad are making the world safer. Now that'  s under threat.


From preparing for pandemics to boosting crop yields, Nigerian scientists who work and train abroad are making the world safer. Now that'  s under threat.


  
Mott and generalized Wigner crystal states in WSe2/WS2 moire superlattices 期刊论文
NATURE, 2020, 579 (7799) : 359-+
作者:  Yuan, Jie;  Chang, Si-Yuan;  Yin, Shi-Gang;  Liu, Zhi-Yang;  Cheng, Xiu;  Liu, Xi-Juan;  Jiang, Qiang;  Gao, Ge;  Lin, De-Ying;  Kang, Xin-Lei;  Ye, Shi-Wei;  Chen, Zheng;  Yin, Jiang-An;  Hao, Pei;  Jiang, Lubin;  Cai, Shi-Qing
收藏  |  浏览/下载:50/0  |  提交时间:2020/07/03

Strongly correlated insulating Mott and generalized Wigner phases are detected in WSe2/WS2 moire superlattices, and their electrical properties and excited spin states are studied using an optical technique.


Moire superlattices can be used to engineer strongly correlated electronic states in two-dimensional van der Waals heterostructures, as recently demonstrated in the correlated insulating and superconducting states observed in magic-angle twisted-bilayer graphene and ABC trilayer graphene/boron nitride moire superlattices(1-4). Transition metal dichalcogenide moire heterostructures provide another model system for the study of correlated quantum phenomena(5) because of their strong light-matter interactions and large spin-orbit coupling. However, experimental observation of correlated insulating states in this system is challenging with traditional transport techniques. Here we report the optical detection of strongly correlated phases in semiconducting WSe2/WS2 moire superlattices. We use a sensitive optical detection technique and reveal a Mott insulator state at one hole per superlattice site and surprising insulating phases at 1/3 and 2/3 filling of the superlattice, which we assign to generalized Wigner crystallization on the underlying lattice(6-11). Furthermore, the spin-valley optical selection rules(12-14) of transition metal dichalcogenide heterostructures allow us to optically create and investigate low-energy excited spin states in the Mott insulator. We measure a very long spin relaxation lifetime of many microseconds in the Mott insulating state, orders of magnitude longer than that of charge excitations. Our studies highlight the value of using moire superlattices beyond graphene to explore correlated physics.